Page 158 - 《软件学报》2026年第1期
P. 158

苏琳萱 等: 区块链状态分片技术综述                                                               155


                 [51]   Skidanov A, Polosukhin I. Nightshade: Near protocol sharding design. 2019. https://nearprotocol.com/downloads/Nightshade.pdf
                 [52]   Zhang JT, Hong ZC, Qiu XY, Zhan YF, Guo S, Chen WH. SkyChain: A deep reinforcement learning-empowered dynamic blockchain
                     sharding system. In: Proc. of the 49th Int’l Conf. on Parallel Processing. Edmonton: ACM, 2020. 3. [doi: 10.1145/3404397.3404460]
                 [53]   Sutton RS, Barto AG. Reinforcement Learning: An Introduction. Cambridge: MIT Press, 1998.
                 [54]   LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436–444. [doi: 10.1038/nature14539]
                 [55]   Arulkumaran  K,  Deisenroth  MP,  Brundage  M,  Bharath  AA.  Deep  reinforcement  learning:  A  brief  survey.  IEEE  Signal  Processing
                     Magazine, 2017, 34(6): 26–38. [doi: 10.1109/MSP.2017.2743240]
                 [56]   Yang ZX, Yang RZ, Yu FR, Li M, Zhang YH, Teng YL. Sharded blockchain for collaborative computing in the Internet of Things:
                     Combined of dynamic clustering and deep reinforcement learning approach. IEEE Internet of Things Journal, 2022, 9(17): 16494–16509.
                     [doi: 10.1109/JIOT.2022.3152188]
                 [57]   Yuan SJ, Li J, Liang JH, Zhu YX, Yu X, Chen JP, Wu CT. Sharding for blockchain based mobile edge computing system: A deep
                     reinforcement learning approach. In: Proc. of the 2021 IEEE Global Communications Conf. (GLOBECOM). Madrid: IEEE, 2021. 1–6.
                     [doi: 10.1109/GLOBECOM46510.2021.9685883]
                 [58]   Yun J, Goh Y, Chung JM. DQN-based optimization framework for secure sharded blockchain systems. IEEE Internet of Things Journal,
                     2021, 8(2): 708–722. [doi: 10.1109/JIOT.2020.3006896]
                 [59]   Li PZ, Song MX, Xing MZ, Xiao Z, Ding QY, Guan SJ, Long JY. SPRING: Improving the throughput of sharding blockchain via deep
                     reinforcement learning based state placement. In: Proc. of the 2024 ACM on Web Conf. Singapore: ACM, 2024. 2836–2846. [doi: 10.
                     1145/3589334.3645386]
                 [60]   Li MZ, Wang W, Zhang J. LB-Chain: Load-balanced and low-latency blockchain sharding via account migration. IEEE Trans. on Parallel
                     and Distributed Systems, 2023, 34(10): 2797–2810. [doi: 10.1109/TPDS.2023.3238343]
                 [61]   Gers  FA,  Schmidhuber  J,  Cummins  F.  Learning  to  forget:  Continual  prediction  with  LSTM.  Neural  Computation,  2000,  12(10):
                     2451–2471. [doi: 10.1162/089976600300015015]
                 [62]   Tian GH, Hu YH, Chen XF. Research progress on attack and defense techniques in block-chain system. Ruan Jian Xue Bao/Journal of
                     Software, 2021, 32(5): 1495–1525 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6213.htm [doi: 10.13328/j.cnki.
                     jos.006213]
                 [63]   Huang HW, Zhao YT, Zheng ZB. tMPT: Reconfiguration across blockchain shards via trimmed Merkle patricia trie. In: Proc. of the 31st
                     IEEE/ACM Int’l Symp. on Quality of Service (IWQoS). Orlando: IEEE, 2023. 1–10. [doi: 10.1109/IWQoS57198.2023.10188757]
                 [64]   Kim JY, Lee J, Koo Y, Park S, Moon SM. Ethanos: Efficient bootstrapping for full nodes on account-based blockchain. In: Proc. of the
                     16th European Conf. on Computer Systems. ACM, 2021. 99–113. [doi: 10.1145/3447786.3456231]
                 [65]   Huang HW, Lin Y, Zheng ZB. Account migration across blockchain shards using fine-tuned lock mechanism. In: Proc. of the 2024 IEEE
                     Conf. on Computer Communications. Vancouver: IEEE, 2024. 271–280. [doi: 10.1109/INFOCOM52122.2024.10621244]
                 [66]   Haerder T, Reuter A. Principles of transaction-oriented database recovery. ACM Computing Surveys (CSUR), 1983, 15(4): 287–317.
                     [doi: 10.1145/289.291]
                 [67]   Bernstein PA, Hadzilacos V, Goodman N. Concurrency Control and Recovery in Database Systems. Reading: Addison-Wesley, 1987.
                 [68]   Zhu T, Guo JW, Zhou H, Zhou X, Zhou AY. Consistency and availability in distributed database systems. Ruan Jian Xue Bao/Journal of
                     Software, 2018, 29(1): 131–149 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5433.htm [doi: 10.13328/j.cnki.jos.
                     005433]
                 [69]   Zheng J, Chen QD, Su CH, Huang HW. BrokerFi: A DeFi dapp built upon broker-based blockchain. In: Proc. of the 29th IEEE Int’l
                     Conf. on Parallel and Distributed Systems (ICPADS). IEEE, 2023. 1817–1825. [doi: 10.1109/ICPADS60453.2023.00251]
                 [70]   Jensen  JR,  von  Wachter  V,  Ross  O.  An  introduction  to  decentralized  finance  (DeFi).  Complex  Systems  Informatics  and  Modeling
                     Quarterly, 2021, 26(26): 46–54. [doi: 10.7250/csimq.2021-26.03]
                 [71]   Chen QD, Huang HW, Yin ZK, Ye G, Yang QL. Broker2Earn: Towards maximizing broker revenue and system liquidity for sharded
                     blockchains. In: Proc. of the 2024 IEEE Conf. on Computer Communications. IEEE, 2024. 251–260. [doi: 10.1109/INFOCOM52122.
                     2024.10621431]
                 [72]   Cai T, Chen WH, Zhang JT, Zheng ZB. SmartChain: A dynamic and self-adaptive sharding framework for IoT blockchain. IEEE Trans.
                     on Services Computing, 2024, 17(2): 674–688. [doi: 10.1109/TSC.2024.3376242]
                 [73]   Zhang  JT,  Chen  WH,  Hong  ZC,  Xiao  G,  Du  LL,  Zheng  ZB.  Efficient  execution  of  arbitrarily  complex  cross-shard  contracts  for
                     blockchain sharding. IEEE Trans. on Computers, 2024, 73(5): 1190–1205. [doi: 10.1109/TC.2024.3365929]
   153   154   155   156   157   158   159   160   161   162   163