Page 157 - 《软件学报》2026年第1期
P. 157

154                                                        软件学报  2026  年第  37  卷第  1  期


                     distributed ledger. Ruan Jian Xue Bao/Journal of Software, 2020, 31(4): 1124–1142 (in Chinese with English abstract). http://www.jos.
                     org.cn/1000-9825/5982.htm [doi: 10.13328/j.cnki.jos.005982]
                 [29]   Li F, Li ZR, Li H. Research on the progress in cross-chain technology of blockchains. Ruan Jian Xue Bao/Journal of Software, 2019,
                     30(6): 1649–1660 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5741.htm [doi: 10.13328/j.cnki.jos.005741]
                 [30]   Poon  J,  Dryja  T.  The  bitcoin  lightning  network:  Scalable  off-chain  instant  payments  (DRAFT  Version  0.5.9.2).  2016.  https://
                     nakamotoinstitute.org/library/lightning-network/
                 [31]   Thibault LT, SarryT, Hafid AS. Blockchain scaling using rollups: A comprehensive survey. IEEE Access, 2022, 10: 93039–93054. [doi:
                     10.1109/ACCESS.2022.3200051]
                 [32]   Gervais A, Karame GO, Wüst K, Glykantzis V, Ritzdorf H, Capkun S. On the security and performance of proof of work blockchains. In:
                     Proc. of the 2016 ACM SIGSAC Conf. on Computer and Communications Security. Vienna: ACM, 2016. 3–16. [doi: 10.1145/2976749.
                     2978341]
                 [33]   Król M, Ascigil O, Rene S, Sonnino A, Al-Bassam M, Rivière E. Shard scheduler: Object placement and migration in sharded account-
                     based blockchains. In: Proc. of the 3rd ACM Conf. on Advances in Financial Technologies. Arlington: ACM, 2021. 43–56. [doi: 10.1145/
                     3479722.3480989]
                 [34]   Hu DC, Wang JR, Liu XL, Li Q, Li KQ. LMChain: An efficient load-migratable beacon-based sharding blockchain system. IEEE Trans.
                     on Computers, 2024, 73(9): 2178–2191. [doi: 10.1109/TC.2024.3404057]
                 [35]   Wang S, Ouyang LW, Yuan Y, Ni XC, Han X, Wang FY. Blockchain-enabled smart contracts: Architecture, applications, and future
                     trends. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2019, 49(11): 2266–2277. [doi: 10.1109/TSMC.2019.2895123]
                 [36]   Kokoris-Kogias E, Jovanovic P, Gasser L, Gailly N, Syta E, Ford B. OmniLedger: A secure, scale-out, decentralized ledger via sharding.
                     In: Proc. of the 2018 IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2018. 583–598. [doi: 10.1109/SP.2018.000-5]
                 [37]   Zamani M, Movahedi M, Raykova M. RapidChain: Scaling blockchain via full sharding. In: Proc. of the 2018 ACM SIGSAC Conf. on
                     Computer and Communications Security. Toronto: ACM, 2018. 931–948. [doi: 10.1145/3243734.3243853]
                 [38]   Al-Bassam M, Sonnino A, Bano S, Hrycyszyn D, Danezis G. Chainspace: A sharded smart contracts platform. In: Proc. of the 25th
                     Annual Network and Distributed System Security Symp. San Diego, 2018.
                 [39]   Wang  JP,  Wang  H.  Monoxide:  Scale  out  blockchains  with  asynchronous  consensus  zones.  In:  Proc.  of  the  16th  USENIX  Symp.  on
                     Networked Systems Design and Implementation (NSDI 2019). Boston: USENIX, 2019. 95–112.
                 [40]   Nguyen LN, Nguyen TDT, Dinh TN, Thai MT. OptChain: Optimal transactions placement for scalable blockchain sharding. In: Proc. of
                     the 39th IEEE Int’l Conf. on Distributed Computing Systems (ICDCS). Dallas: IEEE, 2019. 525–535. [doi: 10.1109/ICDCS.2019.00059]
                 [41]   Fynn E, Pedone F. Challenges and pitfalls of partitioning blockchains. In: Proc. of the 48th Annual IEEE/IFIP Int’l Conf. on Dependable
                     Systems and Networks Workshops (DSN-W). Luxembourg: IEEE, 2018. 128–133. [doi: 10.1109/DSN-W.2018.00051]
                 [42]   Li CL, Huang HW, Zhao YT, Peng XW, Yang RJ, Zheng ZB, Guo S. Achieving scalability and load balance across blockchain shards for
                     state sharding. In: Proc. of the 41st Int’l Symp. on Reliable Distributed Systems (SRDS). Vienna: IEEE, 2022. 284–294. [doi: 10.1109/
                     SRDS55811.2022.00034]
                 [43]   Zhang YZ, Pan SR, Yu JS. TxAllo: Dynamic transaction allocation in sharded blockchain systems. In: Proc. of the 39th IEEE Int’l Conf.
                     on Data Engineering (ICDE). Anaheim: IEEE, 2023. 721–733. [doi: 10.1109/ICDE55515.2023.00390]
                 [44]   Jia LP, Liu YX, Wang KY, Sun Y. Estuary: A low cross-shard blockchain sharding protocol based on state splitting. IEEE Trans. on
                     Parallel and Distributed Systems, 2024, 35(3): 405–420. [doi: 10.1109/TPDS.2024.3351632]
                 [45]   Xu J, Ming YL, Wu ZH, Wang C, Jia XH. X-Shard: Optimistic cross-shard transaction processing for sharding-based blockchains. IEEE
                     Trans. on Parallel and Distributed Systems, 2024, 35(4): 548–559. [doi: 10.1109/TPDS.2024.3361180]
                 [46]   Karypis G, Kumar V. METIS: Unstructured graph partitioning and sparse matrix ordering system version 2.0. METIS, 1995.
                 [47]   Meyerhenke H, Sanders P, Schulz C. Parallel graph partitioning for complex networks. IEEE Trans. on Parallel and Distributed Systems,
                     2017, 28(9): 2625–2638. [doi: 10.1109/TPDS.2017.2671868]
                 [48]   Li H, Liu YN, Yuan H, Yang SQ, Yun JP, Qiao SJ, Huang JB, Cui JT. Research on dynamic graph partitioning algorithms: A survey.
                     Ruan Jian Xue Bao/Journal of Software, 2022, 34(2): 539–564 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6705.
                     htm [doi: 10.13328/j.cnki.jos.006705]
                 [49]   Ugander J, Backstrom L. Balanced label propagation for partitioning massive graphs. In: Proc. of the 6th ACM Int’l Conf. on Web Search
                     and Data Mining. Rome: ACM, 2013. 507–516. [doi: 10.1145/2433396.2433461]
                 [50]   Jin  D,  Yu  ZZ,  Jiao  PF,  Pan  SR,  He  DX,  Wu  J,  Yu  PS,  Zhang  WX.  A  survey  of  community  detection  approaches:  From  statistical
                     modeling  to  deep  learning.  IEEE  Trans.  on  Knowledge  and  Data  Engineering,  2023,  35(2):  1149–1170.  [doi:  10.1109/TKDE.2021.
                     3104155]
   152   153   154   155   156   157   158   159   160   161   162