Page 157 - 《软件学报》2026年第1期
P. 157
154 软件学报 2026 年第 37 卷第 1 期
distributed ledger. Ruan Jian Xue Bao/Journal of Software, 2020, 31(4): 1124–1142 (in Chinese with English abstract). http://www.jos.
org.cn/1000-9825/5982.htm [doi: 10.13328/j.cnki.jos.005982]
[29] Li F, Li ZR, Li H. Research on the progress in cross-chain technology of blockchains. Ruan Jian Xue Bao/Journal of Software, 2019,
30(6): 1649–1660 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5741.htm [doi: 10.13328/j.cnki.jos.005741]
[30] Poon J, Dryja T. The bitcoin lightning network: Scalable off-chain instant payments (DRAFT Version 0.5.9.2). 2016. https://
nakamotoinstitute.org/library/lightning-network/
[31] Thibault LT, SarryT, Hafid AS. Blockchain scaling using rollups: A comprehensive survey. IEEE Access, 2022, 10: 93039–93054. [doi:
10.1109/ACCESS.2022.3200051]
[32] Gervais A, Karame GO, Wüst K, Glykantzis V, Ritzdorf H, Capkun S. On the security and performance of proof of work blockchains. In:
Proc. of the 2016 ACM SIGSAC Conf. on Computer and Communications Security. Vienna: ACM, 2016. 3–16. [doi: 10.1145/2976749.
2978341]
[33] Król M, Ascigil O, Rene S, Sonnino A, Al-Bassam M, Rivière E. Shard scheduler: Object placement and migration in sharded account-
based blockchains. In: Proc. of the 3rd ACM Conf. on Advances in Financial Technologies. Arlington: ACM, 2021. 43–56. [doi: 10.1145/
3479722.3480989]
[34] Hu DC, Wang JR, Liu XL, Li Q, Li KQ. LMChain: An efficient load-migratable beacon-based sharding blockchain system. IEEE Trans.
on Computers, 2024, 73(9): 2178–2191. [doi: 10.1109/TC.2024.3404057]
[35] Wang S, Ouyang LW, Yuan Y, Ni XC, Han X, Wang FY. Blockchain-enabled smart contracts: Architecture, applications, and future
trends. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2019, 49(11): 2266–2277. [doi: 10.1109/TSMC.2019.2895123]
[36] Kokoris-Kogias E, Jovanovic P, Gasser L, Gailly N, Syta E, Ford B. OmniLedger: A secure, scale-out, decentralized ledger via sharding.
In: Proc. of the 2018 IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2018. 583–598. [doi: 10.1109/SP.2018.000-5]
[37] Zamani M, Movahedi M, Raykova M. RapidChain: Scaling blockchain via full sharding. In: Proc. of the 2018 ACM SIGSAC Conf. on
Computer and Communications Security. Toronto: ACM, 2018. 931–948. [doi: 10.1145/3243734.3243853]
[38] Al-Bassam M, Sonnino A, Bano S, Hrycyszyn D, Danezis G. Chainspace: A sharded smart contracts platform. In: Proc. of the 25th
Annual Network and Distributed System Security Symp. San Diego, 2018.
[39] Wang JP, Wang H. Monoxide: Scale out blockchains with asynchronous consensus zones. In: Proc. of the 16th USENIX Symp. on
Networked Systems Design and Implementation (NSDI 2019). Boston: USENIX, 2019. 95–112.
[40] Nguyen LN, Nguyen TDT, Dinh TN, Thai MT. OptChain: Optimal transactions placement for scalable blockchain sharding. In: Proc. of
the 39th IEEE Int’l Conf. on Distributed Computing Systems (ICDCS). Dallas: IEEE, 2019. 525–535. [doi: 10.1109/ICDCS.2019.00059]
[41] Fynn E, Pedone F. Challenges and pitfalls of partitioning blockchains. In: Proc. of the 48th Annual IEEE/IFIP Int’l Conf. on Dependable
Systems and Networks Workshops (DSN-W). Luxembourg: IEEE, 2018. 128–133. [doi: 10.1109/DSN-W.2018.00051]
[42] Li CL, Huang HW, Zhao YT, Peng XW, Yang RJ, Zheng ZB, Guo S. Achieving scalability and load balance across blockchain shards for
state sharding. In: Proc. of the 41st Int’l Symp. on Reliable Distributed Systems (SRDS). Vienna: IEEE, 2022. 284–294. [doi: 10.1109/
SRDS55811.2022.00034]
[43] Zhang YZ, Pan SR, Yu JS. TxAllo: Dynamic transaction allocation in sharded blockchain systems. In: Proc. of the 39th IEEE Int’l Conf.
on Data Engineering (ICDE). Anaheim: IEEE, 2023. 721–733. [doi: 10.1109/ICDE55515.2023.00390]
[44] Jia LP, Liu YX, Wang KY, Sun Y. Estuary: A low cross-shard blockchain sharding protocol based on state splitting. IEEE Trans. on
Parallel and Distributed Systems, 2024, 35(3): 405–420. [doi: 10.1109/TPDS.2024.3351632]
[45] Xu J, Ming YL, Wu ZH, Wang C, Jia XH. X-Shard: Optimistic cross-shard transaction processing for sharding-based blockchains. IEEE
Trans. on Parallel and Distributed Systems, 2024, 35(4): 548–559. [doi: 10.1109/TPDS.2024.3361180]
[46] Karypis G, Kumar V. METIS: Unstructured graph partitioning and sparse matrix ordering system version 2.0. METIS, 1995.
[47] Meyerhenke H, Sanders P, Schulz C. Parallel graph partitioning for complex networks. IEEE Trans. on Parallel and Distributed Systems,
2017, 28(9): 2625–2638. [doi: 10.1109/TPDS.2017.2671868]
[48] Li H, Liu YN, Yuan H, Yang SQ, Yun JP, Qiao SJ, Huang JB, Cui JT. Research on dynamic graph partitioning algorithms: A survey.
Ruan Jian Xue Bao/Journal of Software, 2022, 34(2): 539–564 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6705.
htm [doi: 10.13328/j.cnki.jos.006705]
[49] Ugander J, Backstrom L. Balanced label propagation for partitioning massive graphs. In: Proc. of the 6th ACM Int’l Conf. on Web Search
and Data Mining. Rome: ACM, 2013. 507–516. [doi: 10.1145/2433396.2433461]
[50] Jin D, Yu ZZ, Jiao PF, Pan SR, He DX, Wu J, Yu PS, Zhang WX. A survey of community detection approaches: From statistical
modeling to deep learning. IEEE Trans. on Knowledge and Data Engineering, 2023, 35(2): 1149–1170. [doi: 10.1109/TKDE.2021.
3104155]

