Page 73 - 《软件学报》2025年第12期
P. 73
5454 软件学报 2025 年第 36 卷第 12 期
[16] Zhang SY, Zhai J, Bu L, Chen MS, Wang LZ, Li XD. Automated generation of LTL specifications for smart home IoT using natural
language. In: Proc. of the 2020 Design, Automation & Test in Europe Conf. & Exhibition (DATE). Grenoble: IEEE, 2020. 622–625. [doi:
10.23919/DATE48585.2020.9116374]
[17] Pandita R, Taneja K, Williams L, Tung T. ICON: Inferring temporal constraints from natural language API descriptions. In: Proc. of the
2016 IEEE Int’l Conf. on Software Maintenance and Evolution (ICSME). Raleigh: IEEE, 2016. 378–388. [doi: 10.1109/ICSME.2016.59]
[18] He J, Bartocci E, Ničković D, Isakovic H, Grosu R. DeepSTL: From English requirements to signal temporal logic. In: Proc. of the 44th
Int’l Conf. on Software Engineering. Pittsburgh: ACM, 2022. 610–622. [doi: 10.1145/3510003.3510171]
[19] Zhong H, Zhang L, Xie T, Mei H. Inferring resource specifications from natural language API documentation. In: Proc. of the 2009
IEEE/ACM Int’l Conf. on Automated Software Engineering. Auckland: IEEE, 2009. 307–318. [doi: 10.1109/ASE.2009.94]
[20] Fuggitti F, Chakraborti T. NL2LTL—A Python package for converting natural language (NL) instructions to linear temporal logic (LTL)
formulas. In: Proc. of the 37th AAAI Conf. on Artificial Intelligence. Washington: AAAI Press, 2023. 16428–16430. [doi: 10.1609/AAAI.
V37I13.27068]
[21] Wang XB, Liu DM, Zhao L, Xue YN. Runtime verification monitor construction for three-valued PPTL. In: Proc. of the 6th Int’l
Workshop on Structured Object-oriented Formal Language and Method. Tokyo: Springer, 2016. 144–159. [doi: 10.1007/978-3-319-
57708-1_9]
[22] Wu Q. Research on temporal logic semantic analysis of natural language requirements [MS. Thesis]. Xi’an: Xidian University, 2024 (in
Chinese with English abstract).
[23] Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional Transformers for language understanding. In: Proc.
of the 2019 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
Minneapolis: ACL, 2019. 4171–4186. [doi: 10.18653/V1/N19-1423]
[24] Radford A, Narasimhan K, Salimans T, Sutskever I. Improving language understanding by generative pre-training. 2018. https://cdn.
openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
[25] Yang ZL, Dai ZH, Yang YM, Carbonell J, Salakhutdinov R, Le QV. XLNet: Generalized autoregressive pretraining for language
understanding. arXiv:1906.08237, 2019.
[26] Blasi A, Gorla A, Ernst MD, Pezzè M. Call me maybe: Using NLP to automatically generate unit test cases respecting temporal
constraints. In: Proc. of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2022. 19. [doi: 10.1145/
3551349.3556961]
[27] Pandita R, Xiao XS, Yang W, Enck W, Xie T. WHYPER: Towards automating risk assessment of mobile applications. In: Proc. of the
22nd USENIX Conf. on Security. Washington: USENIX Association, 2013. 527–542.
[28] Chen YB, Liu Z, Xu HJ, Darrell T, Wang XL. Meta-baseline: Exploring simple meta-learning for few-shot learning. In: Proc. of the 2021
IEEE/CVF Int’l Conf. on Computer Vision. Montreal: IEEE, 2021. 9042–9051. [doi: 10.1109/ICCV48922.2021.00893]
[29] Bushara AR, Kumar RSV, Kumar SS. Classification of benign and malignancy in lung cancer using capsule networks with dynamic
routing algorithm on computed tomography images. Journal of Artificial Intelligence and Technology, 2024, 4(1): 40–48. [doi: 10.37965/
jait.2023.0218]
[30] Socher R, Chen DQ, Manning CD, Ng AY. Reasoning with neural tensor networks for knowledge base completion. In: Proc. of the 27th
Int’l Conf. on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2013. 926–934.
[31] Ahn J, Chang K, Choi KM, Kim T, Park H. DTOC-P: Deep-learning-driven timing optimization using commercial EDA tool with
practicality enhancement. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems, 2024, 43(8): 2493–2506. [doi: 10.
1109/TCAD.2024.3370110]
[32] Wei J, Zou K. EDA: Easy data augmentation techniques for boosting performance on text classification tasks. In: Proc. of the 2019 Conf.
on Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural Language Processing (EMNLP-IJCNLP).
Hong Kong: ACL, 2019. 6382–6388. [doi: 10.18653/V1/D19-1670]
[33] He LX, Wang Z, Yang SS, Liu T, Huang YM. Generalizing projected gradient descent for deep-learning-aided massive MIMO detection.
IEEE Trans. on Wireless Communications, 2024, 23(3): 1827–1839. [doi: 10.1109/TWC.2023.3292124]
[34] Joulin A, Grave E, Bojanowski P, Mikolov T. Bag of tricks for efficient text classification. In: Proc. of the 15th Conf. on the European
Chapter of the Association for Computational Linguistics. Valencia: ACL, 2017. 427–431. [doi: 10.18653/V1/E17-2068]
[35] Zhang Y, Wallace B. A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. In:
Proc. of the 8th Int’l Joint Conf. on Natural Language Processing. Taipei: Asian Federation of Natural Language Processing, 2017.
253–263. [doi: 10.18653/v1/I17-1026]
[36] Liu PF, Qiu XP, Huang XJ. Recurrent neural network for text classification with multi-task learning. arXiv:1605.05101, 2016.

