Page 311 - 《软件学报》2025年第12期
P. 311
5692 软件学报 2025 年第 36 卷第 12 期
In: Proc. of the 32nd AAAI Conf. on Artificial Intelligence. New Orleans: AAAI, 2017. 4954–4961. [doi: 10.1609/aaai.v32i1.11924]
[17] Speranskaya M, Schmitt M, Roth B. Ranking vs. Classifying: Measuring knowledge base completion quality. In: Proc. of the 2020 Conf.
on Automated Knowledge Base Construction. AKBC, 2020. [doi: 10.24432/C57G65]
[18] Wang Q, Mao ZD, Wang B, Guo L. Knowledge graph embedding: A survey of approaches and applications. IEEE Trans. on Knowledge
and Data Engineering, 2017, 29(12): 2724–2743. [doi: 10.1109/TKDE.2017.2754499]
[19] Park N, Kan A, Dong XL, Zhao T, Faloutsos C. Estimating node importance in knowledge graphs using graph neural networks. In: Proc.
of the 25th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019: 596–606. [doi: 10.1145/
3292500.3330855]
[20] Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: Bringing order to the Web. 1999. http://ilpubs.stanford.edu:
8090/422/
[21] Li XT, Ng MK, Ye YM. HAR: Hub, authority and relevance scores in multi-relational data for query search. In: Proc. of the 12th SIAM
Int’l Conf. on Data Mining. Anaheim: SIAM, 2012. 141–152. [doi: 10.1137/1.9781611972825]
[22] Han X, Cao SL, Lv X, Lin YK, Liu ZY, Sun MS, Li JZ. OpenKE: An open toolkit for knowledge embedding. In: Proc. of the 2018 Conf.
on Empirical Methods in Natural Language Processing: System Demonstrations. Brussels: ACL, 2018. 139–144. [doi: 10.18653/v1/D18-
2024]
[23] Zhang QG, Dong JN, Duan KY, Huang X, Liu YZ, Xu LC. Contrastive knowledge graph error detection. In: Proc. of the 31st ACM Int’l
Conf. on Information & Knowledge Management. Atlanta: ACM, 2022. 2590–2599. [doi: 10.1145/3511808.3557264]
[24] Ge CC, Gao YJ, Weng HH, Zhang C, Miao XY, Zheng BH. KGClean: An embedding powered knowledge graph cleaning framework.
arXiv:2004.14478, 2020.
[25] Akrami F, Saeef MS, Zhang QH, Hu W, Li CK. Realistic re-evaluation of knowledge graph completion methods: An experimental study.
In: Proc. of the 2020 ACM SIGMOD Int’l Conf. on Management of Data. Portland: ACM, 2020. 1995–2010. [doi: 10.1145/3318464.
3380599]
[26] Gao JY, Li X, Xu YE, Sisman B, Dong XL, Yang J. Efficient knowledge graph accuracy evaluation. Proc. of the VLDB Endowment,
2019, 12(11): 1679–1691. [doi: 10.14778/3342263.3342642]
[27] Pujara J, Augustine E, Getoor L. Sparsity and noise: Where knowledge graph embeddings fall short. In: Proc. of the 2017 Conf. on
Empirical Methods in Natural Language Processing. Copenhagen: ACL, 2017. 1751–1756. [doi: 10.18653/v1/D17-1184]
[28] Wang RY, Strong DM. Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems,
1996, 12(4): 5–33. [doi: 10.1080/07421222.1996.11518099]
[29] Zaveri A, Rula A, Maurino A, Pietrobon R, Lehmann J, Auer S. Quality assessment for linked data: A survey: A systematic literature
review and conceptual framework. Semantic Web, 2016, 7(1): 63–93. [doi: 10.3233/SW-150175]
[30] Xue BC, Zou L. Knowledge graph quality management: A comprehensive survey. IEEE Trans. on Knowledge and Data Engineering,
2023, 35(5): 4969–4988. [doi: 10.1109/TKDE.2022.3150080]
[31] Acosta M, Zaveri A, Simperl E, Kontokostas D, Flöck F, Lehmann J. Detecting linked data quality issues via crowdsourcing: A DBpedia
study. Semantic Web, 2016, 9(3): 303–335. [doi: 10.3233/SW-160239]
[32] Qi YF, Zheng WG, Hong L, Zou L. Evaluating knowledge graph accuracy powered by optimized human-machine collaboration. In: Proc.
of the 28th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Washington: ACM, 2022. 1368–1378. [doi: 10.1145/
3534678.3539233]
[33] Amaral G, Rodrigues O, Simperl E. ProVe: A pipeline for automated provenance verification of knowledge graphs against textual
sources. Semantic Web, 2024, 15(6): 2159–2192. [doi: 10.3233/SW-233467]
[34] Fan WF. Dependencies for graphs: Challenges and opportunities. Journal of Data and Information Quality, 2019, 11(2): 1–12. [doi: 10.
1145/3310230]
[35] Fan WF, Hu CM, Liu XL, Lu P. Discovering graph functional dependencies. ACM Trans. on Database Systems (TODS), 2020, 45(3): 15.
[doi: 10.1145/3397198]
附录 A. 评估误差范围分析
|G| = N, µ 1 (G) = p, G = G T +G F , G T 代表知识图谱中的正确三
对于简单随机抽样方法, 若对于知识图谱 G 有
元组集合, G F 代表错误三元组集合, 则 |G T | = N × p, 如果令 S 2 (G) 表示经过简单随机抽样方法抽取出的 n 个三元

