Page 311 - 《软件学报》2025年第12期
P. 311

5692                                                      软件学报  2025  年第  36  卷第  12  期


                     In: Proc. of the 32nd AAAI Conf. on Artificial Intelligence. New Orleans: AAAI, 2017. 4954–4961. [doi: 10.1609/aaai.v32i1.11924]
                 [17]   Speranskaya M, Schmitt M, Roth B. Ranking vs. Classifying: Measuring knowledge base completion quality. In: Proc. of the 2020 Conf.
                     on Automated Knowledge Base Construction. AKBC, 2020. [doi: 10.24432/C57G65]
                 [18]   Wang Q, Mao ZD, Wang B, Guo L. Knowledge graph embedding: A survey of approaches and applications. IEEE Trans. on Knowledge
                     and Data Engineering, 2017, 29(12): 2724–2743. [doi: 10.1109/TKDE.2017.2754499]
                 [19]   Park N, Kan A, Dong XL, Zhao T, Faloutsos C. Estimating node importance in knowledge graphs using graph neural networks. In: Proc.
                     of  the  25th  ACM  SIGKDD  Int’l  Conf.  on  Knowledge  Discovery  &  Data  Mining.  Anchorage:  ACM,  2019:  596–606.  [doi:  10.1145/
                     3292500.3330855]
                 [20]   Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: Bringing order to the Web. 1999. http://ilpubs.stanford.edu:
                     8090/422/
                 [21]   Li XT, Ng MK, Ye YM. HAR: Hub, authority and relevance scores in multi-relational data for query search. In: Proc. of the 12th SIAM
                     Int’l Conf. on Data Mining. Anaheim: SIAM, 2012. 141–152. [doi: 10.1137/1.9781611972825]
                 [22]   Han X, Cao SL, Lv X, Lin YK, Liu ZY, Sun MS, Li JZ. OpenKE: An open toolkit for knowledge embedding. In: Proc. of the 2018 Conf.
                     on Empirical Methods in Natural Language Processing: System Demonstrations. Brussels: ACL, 2018. 139–144. [doi: 10.18653/v1/D18-
                     2024]
                 [23]   Zhang QG, Dong JN, Duan KY, Huang X, Liu YZ, Xu LC. Contrastive knowledge graph error detection. In: Proc. of the 31st ACM Int’l
                     Conf. on Information & Knowledge Management. Atlanta: ACM, 2022. 2590–2599. [doi: 10.1145/3511808.3557264]
                 [24]   Ge CC, Gao YJ, Weng HH, Zhang C, Miao XY, Zheng BH. KGClean: An embedding powered knowledge graph cleaning framework.
                     arXiv:2004.14478, 2020.
                 [25]   Akrami F, Saeef MS, Zhang QH, Hu W, Li CK. Realistic re-evaluation of knowledge graph completion methods: An experimental study.
                     In: Proc. of the 2020 ACM SIGMOD Int’l Conf. on Management of Data. Portland: ACM, 2020. 1995–2010. [doi: 10.1145/3318464.
                     3380599]
                 [26]   Gao JY, Li X, Xu YE, Sisman B, Dong XL, Yang J. Efficient knowledge graph accuracy evaluation. Proc. of the VLDB Endowment,
                     2019, 12(11): 1679–1691. [doi: 10.14778/3342263.3342642]
                 [27]   Pujara J, Augustine E, Getoor L. Sparsity and noise: Where knowledge graph embeddings fall short. In: Proc. of the 2017 Conf. on
                     Empirical Methods in Natural Language Processing. Copenhagen: ACL, 2017. 1751–1756. [doi: 10.18653/v1/D17-1184]
                 [28]   Wang RY, Strong DM. Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems,
                     1996, 12(4): 5–33. [doi: 10.1080/07421222.1996.11518099]
                 [29]   Zaveri A, Rula A, Maurino A, Pietrobon R, Lehmann J, Auer S. Quality assessment for linked data: A survey: A systematic literature
                     review and conceptual framework. Semantic Web, 2016, 7(1): 63–93. [doi: 10.3233/SW-150175]
                 [30]   Xue BC, Zou L. Knowledge graph quality management: A comprehensive survey. IEEE Trans. on Knowledge and Data Engineering,
                     2023, 35(5): 4969–4988. [doi: 10.1109/TKDE.2022.3150080]
                 [31]   Acosta M, Zaveri A, Simperl E, Kontokostas D, Flöck F, Lehmann J. Detecting linked data quality issues via crowdsourcing: A DBpedia
                     study. Semantic Web, 2016, 9(3): 303–335. [doi: 10.3233/SW-160239]
                 [32]   Qi YF, Zheng WG, Hong L, Zou L. Evaluating knowledge graph accuracy powered by optimized human-machine collaboration. In: Proc.
                     of  the  28th  ACM  SIGKDD  Conf.  on  Knowledge  Discovery  and  Data  Mining.  Washington:  ACM,  2022.  1368–1378.  [doi:  10.1145/
                     3534678.3539233]
                 [33]   Amaral  G,  Rodrigues  O,  Simperl  E.  ProVe:  A  pipeline  for  automated  provenance  verification  of  knowledge  graphs  against  textual
                     sources. Semantic Web, 2024, 15(6): 2159–2192. [doi: 10.3233/SW-233467]
                 [34]   Fan WF. Dependencies for graphs: Challenges and opportunities. Journal of Data and Information Quality, 2019, 11(2): 1–12. [doi: 10.
                     1145/3310230]
                 [35]   Fan WF, Hu CM, Liu XL, Lu P. Discovering graph functional dependencies. ACM Trans. on Database Systems (TODS), 2020, 45(3): 15.
                     [doi: 10.1145/3397198]

                  附录  A. 评估误差范围分析

                                                         |G| = N, µ 1 (G) = p, G = G T +G F , G T  代表知识图谱中的正确三
                    对于简单随机抽样方法, 若对于知识图谱              G  有
                 元组集合,   G F  代表错误三元组集合, 则     |G T | = N × p, 如果令  S 2 (G) 表示经过简单随机抽样方法抽取出的      n 个三元
   306   307   308   309   310   311   312   313   314   315   316