Page 314 - 《软件学报》2025年第12期
P. 314

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 2025,36(12):5695−5719 [doi: 10.13328/j.cnki.jos.007404] [CSTR: 32375.14.jos.007404]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                                                    *
                 结合时间间隔数据增强的对偶视图自监督会话推荐模型

                 钱忠胜,    万子珑,    范赋宇,    付庭峰


                 (江西财经大学 计算机与人工智能学院, 江西 南昌 330013)
                 通信作者: 钱忠胜, E-mail: changesme@163.com

                 摘 要: 会话推荐旨在基于用户的一系列项目预测其交互的下一项目, 现有大多数会话推荐对于会话内项目间的
                 时间间隔信息利用不够充分, 影响推荐准确性. 近年, 图神经网络凭借自身强大的复杂关系建模能力在会话推荐中
                 受到推崇, 但仅基于图神经网络的会话推荐忽略了会话间的隐藏高阶关系, 信息不够丰富. 此外, 数据稀疏性一直
                 是推荐系统中存在的现象, 研究中多使用对比学习对此实施改善, 然而大多对比学习框架形式单一, 泛化能力不强.
                 基于此, 提出一种结合自监督学习的会话推荐模型. 首先, 该模型利用用户会话内项目间的时间间隔信息对会话序
                 列实施数据增强, 丰富会话内信息, 以提高推荐准确性; 其次, 构建超图卷积网络和                       Transformer 编码器相结合的对
                 偶视图, 从多视角捕捉会话间的隐藏高阶关系, 以丰富推荐多样性; 最后, 融合数据增强后的会话内信息、多视角
                 下的会话间信息以及原始会话信息进行对比学习, 以增强模型泛化性. 通过与                        11  个已有经典模型在     4  个数据集上
                 的对比发现, 所提模型是可行高效的, 在           HR  与  NDCG  指标上分别平均提升     5.96%、5.89%.
                 关键词: 会话推荐; 自监督学习; 超图卷积网络; 对偶视图; 数据增强
                 中图法分类号: TP181

                 中文引用格式: 钱忠胜, 万子珑, 范赋宇, 付庭峰. 结合时间间隔数据增强的对偶视图自监督会话推荐模型. 软件学报, 2025, 36(12):
                 5695–5719. http://www.jos.org.cn/1000-9825/7404.htm
                 英文引用格式: Qian  ZS,  Wan  ZL,  Fan  FY,  Fu  TF.  Dual-view  Self-supervised  Session-based  Recommendation  Model  Based  on
                 Temporal Interval Aware Data Augmentation. Ruan Jian Xue Bao/Journal of Software, 2025, 36(12): 5695–5719 (in Chinese). http://
                 www.jos.org.cn/1000-9825/7404.htm

                 Dual-view Self-supervised Session-based Recommendation Model Based on Temporal Interval
                 Aware Data Augmentation
                 QIAN Zhong-Sheng, WAN Zi-Long, FAN Fu-Yu, FU Ting-Feng
                 (School of Computer and Artificial Intelligence, Jiangxi University of Finance and Economics, Nanchang 330013, China)
                 Abstract:  Session-based  recommendation  aims  to  predict  the  next  item  a  user  will  interact  with  based  on  a  series  of  items.  Most  existing
                 session-based  recommender  systems  do  not  fully  utilize  the  temporal  interval  information  between  items  within  a  session,  affecting  the
                 accuracy  of  recommendations.  In  recent  years,  graph  neural  networks  have  gained  significant  attention  in  session-based  recommendation
                 due  to  their  strong  ability  to  model  complex  relationships.  However,  session-based  recommendations  that  rely  solely  on  graph  neural
                 networks  overlook  the  hidden  high-order  relationships  between  sessions,  resulting  in  less  rich  information.  In  addition,  data  sparsity  has
                 always  been  a  phenomenon  in  recommender  systems,  and  contrastive  learning  is  often  employed  to  address  this  issue.  However,  most
                 contrastive  learning  frameworks  lack  strong  generalization  capabilities  due  to  their  singular  form.  Based  on  this,  a  session-based
                 recommendation  model  combined  with  self-supervised  learning  is  proposed.  First,  the  model  utilizes  the  temporal  interval  information
                 between  items  within  user  sessions  to  perform  data  augmentation,  enriching  the  information  within  the  sessions  to  improve
                 recommendation  accuracy.  Second,  a  dual-view  encoder  is  constructed,  combining  a  hypergraph  convolutional  network  encoder  and  a


                 *    基金项目: 国家自然科学基金  (62262025); 江西省自然科学基金重点项目  (20224ACB202012); 赣鄱俊才支持计划-主要学科学术和技术
                  带头人培养项目-领军人才      (学术类) (20243BCE51024)
                  收稿时间: 2024-08-02; 修改时间: 2024-11-08, 2024-12-14; 采用时间: 2025-01-29; jos 在线出版时间: 2025-06-18
                  CNKI 网络首发时间: 2025-06-19
   309   310   311   312   313   314   315   316   317   318   319