Page 290 - 《软件学报》2025年第12期
P. 290
杨建喜 等: 多语义视图驱动的 OWL 知识图谱表示学习方法 5671
Singapore: ACM, 2024. 2250–2258. [doi: 10.1145/3589334.3645648]
[24] Zhapa-Camacho F, Hoehndorf R. Lattice-preserving ALC ontology embeddings. In: Proc. of the 18th Int’l Conf. on Neural-symbolic
Learning and Reasoning, Part I. Barcelona: Springer, 2024. 355–369. [doi: 10.1007/978-3-031-71167-1_19]
[25] Chen JY, He Y, Geng YX, Jiménez-Ruiz E, Dong H, Horrocks I. Contextual semantic embeddings for ontology subsumption prediction.
World Wide Web, 2023, 26(5): 2569–2591. [doi: 10.1007/s11280-023-01169-9]
[26] Chen JY, Hu P, Jimenez-Ruiz E, Holter OM, Antonyrajah D, Horrocks I. OWL2Vec*: Embedding of OWL ontologies. Machine
Learning, 2021, 110(7): 1813–1845. [doi: 10.1007/s10994-021-05997-6]
[27] Wang Z, Zhang JW, Feng JL, Chen Z. Knowledge graph embedding by translating on hyperplanes. In: Proc. of the 28th AAAI Conf. on
Artificial Intelligence. Québec City: AAAI Press, 2014. 1112–1119. [doi: 10.5555/2893873.2894046]
[28] Lin YK, Liu ZY, Sun MS, Liu Y, Zhu X. Learning entity and relation embeddings for knowledge graph completion. In: Proc. of the 29th
AAAI Conf. on Artificial Intelligence. Austin: AAAI Press, 2015. 2181–2187. [doi: 10.5555/2886521.2886624]
[29] Ji GL, He SZ, Xu LH, Liu K, Zhao J. Knowledge graph embedding via dynamic mapping matrix. In: Proc. of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th Int’l Joint Conf. on Natural Language Processing (Vol. 1: Long Papers).
Beijing: Association for Computational Linguistics, 2015. 687–696. [doi: 10.3115/v1/P15-1067]
[30] Nickel M, Tresp V, Kriegel HP. A three-way model for collective learning on multi-relational data. In: Proc. of the 28th Int’l Conf. on Int’l
Conf. on Machine Learning. Bellevue: Omnipress, 2011. 809–816. [doi: 10.5555/3104482.3104584]
[31] Yang BS, Yih WT, He XD, Gao JF, Deng L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. In: Proc.
of the 3rd Int’l Conf. on Learning Representations. San Diego, 2015.
[32] Trouillon T, Welbl J, Riedel S, Gaussier É, Bouchard G. Complex embeddings for simple link prediction. In: Proc. of the 33rd Int’l Conf.
on Int’l Conf. on Machine Learning. New York: JMLR, 2016. 2071–2080. [doi: 10.5555/3045390.3045609]
[33] Tay Y, Luu A, Hui SC. Non-parametric estimation of multiple embedding for link prediction on dynamic knowledge graphs. In: Proc. of
the 2017 AAAI Conf. on Artificial Intelligence. San Francisco: AAAI Press, 2017. 1243–1249. [doi: 10.1609/aaai.v31i1.10685]
[34] Jia YT, Wang YZ, Jin XL, Lin HL, Cheng XQ. Knowledge graph embedding: A locally and temporally adaptive translation-based
approach. ACM Trans. on the Web, 2017, 12(2): 8. [doi: 10.1145/3132733]
[35] Daruna A, Gupta M, Sridharan M, Chernova S. Continual learning of knowledge graph embeddings. IEEE Robotics and Automation
Letters, 2021, 6(2): 1128–1135. [doi: 10.1109/LRA.2021.3056071]
[36] Wu TX, Khan A, Yong M, Qi GL, Wang M. Efficiently embedding dynamic knowledge graphs. Knowledge-based Systems, 2022, 250:
109124. [doi: 10.1016/j.knosys.2022.109124]
[37] Yao SY, Zhao TZ, Wang RJ, Liu J. Rule-guided joint embedding learning of knowledge graphs. Journal of Computer Research and
Development, 2020, 57(12): 2514–2522 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2020.20200741]
[38] Nayyeri M, Wang ZH, Akter MM, Alam MM, Rony MRAH, Lehmann J, Staab S. Integrating knowledge graph embeddings and pre-
trained language models in hypercomplex spaces. In: Proc. of the 22nd Int’l Semantic Web Conf. on the Semantic Web (ISWC 2023).
Athens: Springer, 2023. 388–407. [doi: 10.1007/978-3-031-47240-4_21]
[39] Xiao L, Shan X, Wang YH, Deng ML. Research on joint representation learning methods for entity neighborhood information and
description information. In: Proc. of the 8th China Conf. on Knowledge Graph and Semantic Computing: Knowledge Graph Empowers
Artificial General Intelligence. Shenyang: Springer, 2023. 41–53. [doi: 10.1007/978-981-99-7224-1_4]
[40] Ning YL, Zhou G, Lu JC, Yang DW, Zhang T. A representation learning method of knowledge graph integrating relation path and entity
description information. Journal of Computer Research and Development, 2022, 59(9): 1966–1979 (in Chinese with English abstract). [10.
7544/issn1000-1239.20210651]
[41] Hu XY, Wang ZZ, Sun YY, Xu B, Lin HF. Knowledge graph representation method combined with semantic parsing. Journal of
Computer Research and Development, 2022, 59(12): 2878–2888 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.
20210849]
[42] Shu D, Chen TL, Jin MY, Zhang C, Du MN, Zhang YF. Knowledge graph large language model (KG-LLM) for link prediction. In: Proc.
of the 16th Asian Conf. on Machine Learning. Hanoi: PMLR, 2025. 143–158.
[43] Yao L, Peng JZ, Mao CS, Luo Y. Exploring large language models for knowledge graph completion. In: Proc. of the 2025 IEEE Int’l
Conf. on Acoustics, Speech and Signal Processing (ICASSP 2025). Hyderabad: IEEE, 2025. 1–5. [doi: 10.1109/ICASSP49660.2025.
10889242]
[44] Hitzler P, Krötzsch M, Parsia B, Patel-Schneider PF, Rudolph S. OWL 2 Web ontology language primer. W3C Recommendation, 2009,
27(1): 123.
[45] Rodríguez-García MÁ, Hoehndorf R. Inferring ontology graph structures using OWL reasoning. BMC bioinformatics, 2018, 19(1): 7.

