Page 289 - 《软件学报》2025年第12期
P. 289
5670 软件学报 2025 年第 36 卷第 12 期
噪声数据的问题, 作者团队也将在未来的工作中对其展开研究, 提升模型方法的鲁棒性以及多种问题的处理能力.
References:
[1] Wang M, Wang HF, Li BH, Zhao X, Wang X. Survey on key technologies of new generation knowledge graph. Journal of Computer
Research and Development, 2022, 59(9): 1947–1965 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.20210829]
[2] Peng CY, Xia F, Naseriparsa M, Osborne F. Knowledge graphs: Opportunities and challenges. Artificial Intelligence Review, 2023,
56(11): 13071–13102. [doi: 10.1007/s10462-023-10465-9]
[3] Chen Y, Wu LF, Zaki MJ. Toward subgraph-guided knowledge graph question generation with graph neural networks. IEEE Trans. on
Neural Networks and Learning Systems, 2024, 35(9): 12706–12717. [doi: 10.1109/TNNLS.2023.3264519]
[4] Yang JX, Yang XX, Li R, Luo MT, Jiang SX, Zhang Y, Wang D. BERT and hierarchical cross attention-based question answering over
bridge inspection knowledge graph. Expert Systems with Applications, 2023, 233: 120896. [doi: 10.1016/j.eswa.2023.120896]
[5] Zhao N, Long Z, Wang J, Zhao ZD. AGRE: A knowledge graph recommendation algorithm based on multiple paths embeddings RNN
encoder. Knowledge-based Systems, 2023, 259: 110078. [doi: 10.1016/j.knosys.2022.110078]
[6] Xia LQ, Liang YS, Leng JW, Zheng P. Maintenance planning recommendation of complex industrial equipment based on knowledge
graph and graph neural network. Reliability Engineering & System Safety, 2023, 232: 109068. [doi: 10.1016/j.ress.2022.109068]
[7] World-Wide Web Consortium. RDF 1.1 Primer. Boston: World-Wide Web Consortium, 2014.
[8] Breitman KK, Casanova MA, Truszkowski W. RDF and RDF schema. Semantic Web: Concepts, Technologies and Applications, 2007,
57–79.
[9] Hogan A. RDF schema and semantics. In: Hogan A. The Web of Data. Cham: Springer, 2020: 111–183. [doi: 10.1007/978-3-030-51580-
5_4]
[10] McGuinness DL, van Harmelen F. OWL Web ontology language—Overview. 2004. https://www.w3.org/TR/owl-features/
[11] Antoniou G, van Harmelen F. Web ontology language: OWL. In: Staab S, Studer R. Handbook on Ontologies. Heidelberg: Springer,
2009: 91–110. [doi: 10.1007/978-3-540-92673-3_4]
[12] Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Freebase: A collaboratively created graph database for structuring human
knowledge. In: Proc. of the 2008 ACM SIGMOD Int’l Conf. on Management of Data. Vancouver: ACM, 2008. 1247–1250. [doi: 10.1145/
1376616.1376746]
[13] Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes PN, Hellmann S, Morsey M, van Kleef P, Auer S, Bizer C.
DBpedia—A large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web, 2015, 6(2): 167–195. [doi: 10.3233/SW-
140134]
[14] Dragoni M, Bailoni T, Maimone R, Eccher C. HeLiS: An ontology for supporting healthy lifestyles. In: Proc. of the 17th Int’l Semantic
Web Conf. on the Semantic Web. Monterey: Springer, 2018. 53–69. [doi: 10.1007/978-3-030-00668-6_4]
[15] Dooley DM, Griffiths EJ, Gosal GS, Buttigieg PL, Hoehndorf R, Lange MC, Schriml LM, Brinkman FSL, Hsiao WWL. FoodOn: A
harmonized food ontology to increase global food traceability, quality control and data integration. npj Science of Food, 2018, 2(1): 23.
[doi: 10.1038/s41538-018-0032-6]
[16] The Gene Ontology Consortium. The gene ontology project in 2008. Nucleic Acids Research, 2008, 36(S1): D440–D444. [doi: 10.1093/
nar/gkm883]
[17] Zhong LF, Wu J, Li Q, Peng H, Wu XD. A comprehensive survey on automatic knowledge graph construction. ACM Computing
Surveys, 2024, 56(4): 94. [doi: 10.1145/3618295]
[18] Du XY, Liu MW, Shen LW, Peng X. Survey on representation learning methods of knowledge graph for link prediction. Ruan Jian Xue
Bao/Journal of Software, 2024, 35(1): 87–117 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6902.htm [doi: 10.
13328/j.cnki.jos.006902]
[19] Bordes A, Usunier N, Garcia-Durán A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational data. In: Proc. of
the 27th Int’l Conf. on Neural Int’l Processing Systems—Vol. 2. Lake Tahoe: Curran Associates Inc., 2013. 2787–2795. [doi: 10.5555/
2999792.2999923]
[20] Xiao H, Huang ML, Hao Y, Zhu XY. TransG: A generative mixture model for knowledge graph embedding. arXiv:1509.05488, 2017.
[21] Zhu YL, Yang XP, Wang L, Zhang ZY. TransRD: Embedding of knowledge graph with asymmetric features. Journal of Chinese
Information Processing, 2019, 33(11): 73–82 (in Chinese with English abstract). [doi: 10.3969/j.issn.1003-0077.2019.11.009]
[22] Li Z, Liu X, Wang X, Liu PK, Shen YX. TransO: A knowledge-driven representation learning method with ontology information
constraints. World Wide Web, 2023, 26(1): 297–319. [doi: 10.1007/s11280-022-01016-3]
++
[23] Jackermeier M, Chen JY, Horrocks I. Dual box embeddings for the description logic EL . In: Proc. of the 2024 ACM Web Conf.

