Page 216 - 《软件学报》2025年第12期
P. 216

吴信东 等: 华谱通: 基于知识推理的家谱问答大语言模型                                                    5597


                     Linguistics, 2022. 320–335. [doi: 10.18653/v1/2022.acl-long.26]
                 [35]   Wang L, Ma YY, Bi WS, Lv HL, Li YX. An entity extraction pipeline for medical text records using large language models: Analytical
                     study. Journal of Medical Internet Research, 2024, 26: e54580. [doi: 10.2196/54580]
                 [36]   Bi  KF,  Xie  LX,  Zhang  HH,  Chen  X,  Gu  XT,  Tian  Q.  Accurate  medium-range  global  weather  forecasting  with  3D  neural  networks.
                     Nature, 2023, 619(7970): 533–538. [doi: 10.1038/s41586-023-06185-3]
                 [37]   Li XL, Liang P. Prefix-tuning: Optimizing continuous prompts for generation. In: Proc. of the 59th Annual Meeting of the Association for
                     Computational  Linguistics  and  the  11th  Int’l  Joint  Conf.  on  Natural  Language  Processing  (Vol.  1:  Long  Papers).  Pennsylvania:
                     Association for Computational Linguistics, 2021. 4582–4597. [doi: 10.18653/v1/2021.acl-long.353]
                 [38]   Zhang ZY, Han X, Liu ZY, Jiang X, Sun MS, Liu Q. ERNIE: Enhanced language representation with informative entities. In: Proc. of the
                     57th Conf. of the Association for Computational Linguistics. Florence: Association for Computational Linguistics, 2019. 1441–1451.
                     [doi: 10.18653/v1/P19-1139]
                                                                                        ®
                 [39]   Robertson S, Zaragoza H. The probabilistic relevance framework: BM25 and beyond. Foundations and Trends in Information Retrieval,
                     2009, 3(4): 333–389. [doi: 10.1561/1500000019]
                 [40]   Agrawal S, Zhou CT, Lewis M, Zettlemoyer L, Ghazvininejad M. In-context examples selection for machine translation. In: Proc. of the
                     2023 Findings of the Association for Computational Linguistics. Toronto: Association for Computational Linguistics, 2023. 8857–8873.
                     [doi: 10.18653/v1/2023.findings-acl.564]
                 [41]   Qiao  SJ,  Yang  GP,  Yu  Y,  Han  N,  Tan  X,  Qu  LL,  Ran  LQ,  Li  H.  QA-KGNet:  Language  model-driven  knowledge  graph  question-
                     answering model. Ruan Jian Xue Bao/Journal of Software, 2023, 34(10): 4584–4600 (in Chinese with English abstract). http://www.jos.
                     org.cn/1000-9825/6882.htm [doi: 10.13328/j.cnki.jos.006882]
                 [42]   Luo LH, Li YF, Haffari G, Pan SR. Reasoning on graphs: Faithful and interpretable large language model reasoning. In: Proc. of the 12th
                     Int’l Conf. on Learning Representations. Vienna: OpenReview.net, 2024. 1–24.
                 [43]   Avila CVS, Vidal VMP, Franco W, Casanova MA. Experiments with text-to-SPARQL based on ChatGPT. In: Proc. of the 18th IEEE Int’l
                     Conf. on Semantic Computing. Laguna Hills: IEEE, 2024. 277–284. [doi: 10.1109/ICSC59802.2024.00050]
                 [44]   Shao JX, Liu GL, Ji SW. An abnormal data analysis and processing method for genealogy graph databases. In: Proc. of the 2020 IEEE Int’l
                     Conf. on Knowledge Graph. Nanjing: IEEE, 2020. 131–136. [doi: 10.1109/ICBK50248.2020.00028]
                 [45]   Peng YW, Jiang H, Li RR, Peng ZY. PZXG: A genealogy data service platform for kinship management and application. In: Proc. of the
                     2020 IEEE Int’l Conf. on Knowledge Graph. Nanjing: IEEE, 2020. 505–512. [doi: 10.1109/ICBK50248.2020.00077]
                 [46]   Dong BB, Zhang Z, Li J, Zhu Y, Bu CY, Wu XD. Hypernode: Entity fusion for data traceability and link prediction. In: Proc. of the 2022
                     IEEE Int’l Conf. on Data Mining. Orlando: IEEE, 2022. 111–120. [doi: 10.1109/ICDM54844.2022.00021]

                 附中文参考文献:
                  [1]   吴信东, 李娇, 周鹏, 卜晨阳. 碎片化家谱数据的融合技术. 软件学报, 2021, 32(9): 2816–2836. http://www.jos.org.cn/1000-9825/6010.
                     htm [doi: 10.13328/j.cnki.jos.006010]
                  [3]   吴信东, 盛绍静, 蒋婷婷, 卜晨阳, 吴明辉. 从知识图谱到数据中台: 华谱系统. 自动化学报, 2020, 46(10): 2045–2059. [doi: 10.16383/
                     j.aas.c200502]
                 [18]   王乃钰, 叶育鑫, 刘露, 凤丽洲, 包铁, 彭涛. 基于深度学习的语言模型研究进展. 软件学报, 2021, 32(4): 1082–1115. http://www.jos.
                     org.cn/1000-9825/6169.htm [doi: 10.13328/j.cnki.jos.006169]
                 [20]   李戈, 彭鑫, 王千祥, 谢涛, 金芝, 王戟, 马晓星, 李宣东. 大模型: 基于自然交互的人机协同软件开发与演化工具带来的挑战. 软件学
                     报, 2023, 34(10): 4601–4606. http://www.jos.org.cn/1000-9825/7008.htm [doi: 10.13328/j.cnki.jos.007008]
                 [23]   李诗晨, 王中卿, 周国栋. 大语言模型驱动的跨领域属性级情感分析. 软件学报, 2025, 36(2): 644–659. http://www.jos.org.cn/1000-
                     9825/7156.htm [doi: 10.13328/j.cnki.jos.007156]
                 [24]   梁峥, 王宏志, 戴加佳, 邵心玥, 丁小欧, 穆添愉. 预训练语言模型实体匹配的可解释性. 软件学报, 2023, 34(3): 1087–1108. http://
                     www.jos.org.cn/1000-9825/6794.htm [doi: 10.13328/j.cnki.jos.006794]
                 [25]   琚生根, 黄方怡, 孙界平. 融合预训练语言模型的成语完形填空算法. 软件学报, 2022, 33(10): 3793–3805. http://www.jos.org.cn/1000-
                     9825/6307.htm [doi: 10.13328/j.cnki.jos.006307]
                 [41]   乔少杰, 杨国平, 于泳, 韩楠, 覃晓, 屈露露, 冉黎琼, 李贺. QA-KGNet: 一种语言模型驱动的知识图谱问答模型. 软件学报, 2023,
                     34(10): 4584–4600. http://www.jos.org.cn/1000-9825/6882.htm [doi: 10.13328/j.cnki.jos.006882]
   211   212   213   214   215   216   217   218   219   220   221