Page 129 - 《软件学报》2025年第12期
P. 129

5510                                                      软件学报  2025  年第  36  卷第  12  期


                     2022.
                 [31]   Yamaguchi F, Lottmann M, Rieck K. Generalized vulnerability extrapolation using abstract syntax trees. In: Proc. of the 28th Annual
                     Computer Security Applications Conf. Orlando: ACM, 2012. 359–368. [doi: 10.1145/2420950.2421003]
                 [32]   Neuhaus  S,  Zimmermann  T,  Holler  C,  Zeller  A.  Predicting  vulnerable  software  components.  In:  Proc.  of  the  14th  ACM  Conf.  on
                     Computer and Communications Security. Alexandria: ACM, 2007. 529–540. [doi: 10.1145/1315245.1315311]
                 [33]   Joern. 2019. https://github.com/ShiftLeftSecurity/
                 [34]   Ferrante  J,  Ottenstein  KJ,  Warren  JD.  The  program  dependence  graph  and  its  use  in  optimization.  ACM  Trans.  on  Programming
                     Languages and Systems, 1987, 9(3): 319–349. [doi: 10.1145/24039.24041]
                 [35]   Sinha S, Harrold MJ, Rothermel G. System-dependence-graph-based slicing of programs with arbitrary interprocedural control flow. In:
                     Proc. of the 21st Int’l Conf. on Software Engineering. Los Angeles: ACM, 1999. 432–441. [doi: 10.1145/302405.302675]
                 [36]   Wang  HT,  Ye  GX,  Tang  ZY,  Tan  SH,  Huang  SF,  Fang  DY,  Feng  YS,  Bian  LZ,  Wang  Z.  Combining  graph-based  learning  with
                     automated data collection for code vulnerability detection. IEEE Trans. on Information Forensics and Security, 2020, 16: 1943–1958.
                     [doi: 10.1109/TIFS.2020.3044773]
                 [37]   Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed representations of words and phrases and their compositionality. In:
                     Proc. of the 27th Int’l Conf. on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2013. 3111–3119.
                 [38]   Sohn K. Improved deep metric learning with multi-class N-pair loss objective. In: Proc. of the 30th Int’l Conf. on Neural Information
                     Processing Systems. Barcelona: Curran Associates Inc., 2016. 1857–1865.
                 [39]   van den Oord A, Li YZ, Vinyals O. Representation learning with contrastive predictive coding. arXiv:1807.03748, 2019.
                 [40]   Wu ZR, Xiong YJ, Yu SX, Lin DH. Unsupervised feature learning via non-parametric instance discrimination. In: Proc. of the 2018
                     IEEE/CVF  Conf.  on  Computer  Vision  and  Pattern  Recognition.  Salt  Lake  City:  IEEE,  2018.  3733–3742.  [doi:  10.1109/CVPR.2018.
                     00393]
                 [41]   Bachman P, Hjelm RD, Buchwalter W. Learning representations by maximizing mutual information across views. In: Proc. of the 33rd
                     Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 15535–15545.
                 [42]   Hénaff  OJ,  Srinivas  A,  De  Fauw  J,  Razavi  A,  Doersch  C,  Ali  Eslami  SM,  van  den  Oord  A.  Data-efficient  image  recognition  with
                     contrastive predictive coding. In: Proc. of the 37th Int’l Conf. on Machine Learning. JMLR.org, 2020. 4182–4192.
                 [43]   Baevski A, Zhou H, Mohamed A, Auli M. Wav2vec 2.0: A framework for self-supervised learning of speech representations. In: Proc. of
                     the 34th Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020. 12449–12460.
                 [44]   Conneau A, Baevski A, Collobert R, Mohamed A, Auli M. Unsupervised cross-lingual representation learning for speech recognition.
                     arXiv:2006.13979, 2020.
                 [45]   Tian  YL,  Krishnan  D,  Isola  P.  Contrastive  multiview  coding.  In:  Proc.  of  the  16th  European  Conf.  on  Computer  Vision.  Glasgow:
                     Springer, 2020. 776–794. [doi: 10.1007/978-3-030-58621-8_45]
                 [46]   Hjelm RD, Fedorov A, Lavoie-Marchildon S, Grewal K, Bachman P, Trischler A, Bengio Y. Learning deep representations by mutual
                     information estimation and maximization. arXiv:1808.06670, 2019.
                 [47]   Han TD, Xie WD, Zisserman A. Video representation learning by dense predictive coding. In: Proc. of the 2019 IEEE/CVF Int’l Conf. on
                     Computer Vision Workshop. Seoul: IEEE, 2019. 1483–1492. [doi: 10.1109/ICCVW.2019.00186]
                 [48]   He KM, Fan HQ, Wu YX, Xie SN, Girshick R. Momentum contrast for unsupervised visual representation learning. In: Proc. of the 2020
                     IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 9726–9735. [doi: 10.1109/CVPR42600.2020.00975]
                 [49]   Misra  I,  van  der  Maaten  L.  Self-supervised  learning  of  pretext-invariant  representations.  In:  Proc.  of  the  2020  IEEE/CVF  Conf.  on
                     Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 6706–6716. [doi: 10.1109/CVPR42600.2020.00674]
                 [50]   Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. In: Proc. of the 37th
                     Int’l Conf. on Machine Learning. JMLR.org, 2020. 1597–1607.
                 [51]   Khosla P, Teterwak P, Wang C, Sarna A, Tian YL, Isola P, Maschinot A, Liu C, Krishnan D. Supervised contrastive learning. In: Proc. of
                     the 34th Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020. 18661–18673.
                 [52]   Wu YM, Dou SH, Zou DQ, Yang W, Qiang WZ, Jin H. Obfuscation-resilient Android malware analysis based on contrastive learning.
                     arXiv:2107.03799, 2022.
                 [53]   Gunel B, Du JF, Conneau A, Stoyanov V. Supervised contrastive learning for pre-trained language model fine-tuning. arXiv:2011.01403,
                     2021.
                 [54]   Lin GJ, Zhang J, Luo W, Pan L, De Vel O, Montague P, Xiang Y. Software vulnerability discovery via learning multi-domain knowledge
                     bases. IEEE Trans. on Dependable and Secure Computing, 2021, 18(5): 2469–2485. [doi: 10.1109/TDSC.2019.2954088]
                 [55]   Lin GJ, Wen S, Han QL, Zhang J, Xiang Y. Software vulnerability detection using deep neural networks: A survey. Proc. of the IEEE,
   124   125   126   127   128   129   130   131   132   133   134