Page 246 - 《软件学报》2025年第10期
P. 246
黄静 等: 基于代码控制流图的庞氏骗局合约检测 4643
Atlanta: IEEE, 2019. 266–273. [doi: 10.1109/Blockchain.2019.00042]
[28] Ibba G, Pierro GA, Di Francesco M. Evaluating machine-learning techniques for detecting smart Ponzi schemes. In: Proc. of the 4th
IEEE/ACM Int’l Workshop on Emerging Trends in Software Engineering for Blockchain. Madrid: IEEE, 2021. 34–40. [doi: 10.1109/
WETSEB52558.2021.00012]
[29] Huynh PD, Dau SH, Li XD, Luong P, Viterbo E. Improving robustness and accuracy of Ponzi scheme detection on Ethereum using time-
dependent features. arXiv:2308.16391, 2023.
[30] Wang L, Cheng H, Zheng ZB, Yang AJ, Xu M. Temporal transaction information-aware Ponzi scheme detection for Ethereum smart
contracts. Engineering Applications of Artificial Intelligence, 2023, 126: 107022. [doi: 10.1016/j.engappai.2023.107022]
[31] Zheng ZB, Chen WL, Zhong ZJ, Chen ZG, Lu YT. Securing the Ethereum from smart Ponzi schemes: Identification using static features.
ACM Trans. on Software Engineering and Methodology, 2023, 32(5): 130. [doi: 10.1145/3571847]
[32] Liang YZ, Wu WJ, Lei K, Wang FY. Data-driven smart Ponzi scheme detection. arXiv:2108.09305, 2021.
[33] Jin CX, Jin J, Zhou JJ, Wu JJ, Xuan Q. Heterogeneous feature augmentation for Ponzi detection in Ethereum. IEEE Trans. on Circuits and
Systems II: Express Briefs, 2022, 69(9): 3919–3923. [doi: 10.1109/TCSII.2022.3177898]
[34] Cai J, Li B, Zhang JL, Sun XB. Ponzi scheme detection in smart contract via transaction semantic representation learning. IEEE Trans. on
Reliability, 2024, 73(2): 1117–1131. [doi: 10.1109/TR.2023.3319318]
[35] Yu SQ, Jin J, Xie YY, Shen J, Xuan Q. Ponzi scheme detection in Ethereum transaction network. In: Proc. of the 3rd Int’l Conf.
Blockchain and Trustworthy Systems. Guangzhou: Springer, 2021. 175–186. [doi: 10.1007/978-981-16-7993-3_14]
[36] Ben-Nun T, Jakobovits AS, Hoefler T. Neural code comprehension: A learnable representation of code semantics. In: Proc. of the 32nd
Int’l Conf. on Neural Information Processing Systems. Montréal: Curran Associates Inc., 2018. 3589–3601.
[37] Chen D, Feng L, Fan YQ, Shang SY, Wei ZC. Smart contract vulnerability detection based on semantic graph and residual graph
convolutional networks with edge attention. Journal of Systems and Software, 2023, 202: 111705. [doi: 10.1016/j.jss.2023.111705]
[38] Liu H, Liu C, Zhao WQ, Jiang Y, Sun JG. S-gram: Towards semantic-aware security auditing for Ethereum smart contracts. In: Proc. of
the 33rd IEEE/ACM Int’l Conf. on Automated Software Engineering. Montpellier: IEEE, 2018. 814–819. [doi: 10.1145/3238147.
3240728]
[39] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780. [doi: 10.1162/neco.1997.9.8.1735]
[40] Xu YJ, Hu GG, You L, Cao CT. A novel machine learning-based analysis model for smart contract vulnerability. Security and
Communication Networks, 2021, 2021: 5798033. [doi: 10.1155/2021/5798033]
[41] Wang B, Chu HT, Zhang PC, Dong H. Smart contract vulnerability detection using code representation fusion. In: Proc. of the 28th Asia-
Pacific Software Engineering Conf. Taipei: IEEE, 2021. 564–565. [doi: 10.1109/APSEC53868.2021.00069]
[42] Rossi RA, Zhou R, Ahmed NK. Deep inductive graph representation learning. IEEE Trans. on Knowledge and Data Engineering, 2020,
32(3): 438–452. [doi: 10.1109/tkde.2018.2878247]
[43] Liu ZG, Qian P, Wang XY, Zhuang Y, Qiu L, Wang X. Combining graph neural networks with expert knowledge for smart contract
vulnerability detection. IEEE Trans. on Knowledge and Data Engineering, 2021, 35(2): 1296–1310. [doi: 10.1109/TKDE.2021.3095196]
[44] Yan JQ, Yan GH, Jin D. Classifying malware represented as control flow graphs using deep graph convolutional neural network. In: Proc.
of the 49th Annual IEEE/IFIP Int’l Conf. on Dependable Systems and Networks. Portland: IEEE, 2019. 52–63. [doi: 10.1109/DSN.2019.
00020]
[45] Cai J, Li B, Zhang JL, Sun XB, Chen B. Combine sliced joint graph with graph neural networks for smart contract vulnerability detection.
Journal of Systems and Software, 2023, 195: 111550. [doi: 10.1016/j.jss.2022.111550]
[46] Wen XL, Yeo KS, Wang Y, Cheng L, Zhu FD, Zhu M. Code will tell: Visual identification of Ponzi schemes on Ethereum. In: Proc. of
the Extended Abstracts of the 2023 CHI Conf. on Human Factors in Computing Systems. Hamburg: ACM, 2023. 70. [doi: 10.1145/
3544549.3585861]
[47] Liao XC, Meng HY. Code vulnerability detection of programmable logic controller based on control flow slicing. Computer Integrated
Manufacturing Systems, 2023: 1–13 (in Chinese with English abstract). https://link.cnki.net/urlid/11.5946.TP.20231212.1734.013 [doi:
10.13196/j.cims.2023.0428]
[48] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proc. of the
31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
[49] Nguyen DQ, Nguyen TD, Phung D. Universal graph Transformer self-attention networks. In: Proc. of the 2022 Web Conf. Lyon: ACM,
2022. 193–196. [doi: 10.1145/3487553.3524258]
[50] Mao ST, Sejdić E. A review of recurrent neural network-based methods in computational physiology. IEEE Trans. on Neural Networks
and Learning Systems, 2023, 34(10): 6983–7003. [doi: 10.1109/TNNLS.2022.3145365]

