Page 245 - 《软件学报》2025年第10期
P. 245
4642 软件学报 2025 年第 36 卷第 10 期
Software, 2019, 30(9): 2671–2685 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5776.htm [doi: 10.13328/j.cnki.
jos.005776]
[3] Wood G. Ethereum: A secure decentralised generalised transaction ledger. 2014. https://mholende.win.tue.nl/seminar/references/
ethereum_yellowpaper.pdf
[4] Szabo N. Smart contracts: Building blocks for digital markets. 1996. https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/
CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
[5] Raskin M. The law and legality of smart contracts. Georgetown Law Technology Review, 2016, 1(2): 305–341.
[6] Zheng ZB, Xie SA, Dai HN, Chen WL, Chen XP, Weng J, Imran M. An overview on smart contracts: Challenges, advances and
platforms. Future Generation Computer Systems, 2020, 105: 475–491. [doi: 10.1016/j.future.2019.12.019]
[7] Guo HQ, Yu XJ. A survey on blockchain technology and its security. Blockchain: Research and Applications, 2022, 3(2): 100067. [doi:
10.1016/j.bcra.2022.100067]
[8] Chen WL, Zheng ZB. Blockchain data analysis: A review of status, trends and challenges. Journal of Computer Research and
Development, 2018, 55(9): 1853–1870 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2018.20180127]
[9] Hewa TM, Hu YN, Liyanage M, Kanhare SS, Ylianttila M. Survey on blockchain-based smart contracts: Technical aspects and future
research. IEEE Access, 2021, 9: 87643–87662. [doi: 10.1109/ACCESS.2021.3068178]
[10] Hu HW, Bai QL, Xu YD. SCSGuard: Deep scam detection for Ethereum smart contracts. In: Proc. of the 2022 IEEE Conf. on Computer
Communications Workshops. New York: IEEE, 2022. 1–6. [doi: 10.1109/INFOCOMWKSHPS54753.2022.9798296]
[11] Hidajat T, Primiana I, Rahman S, Febrian E. Why are people trapped in Ponzi and pyramid schemes? Journal of Financial Crime, 2020,
28(1): 187–203. [doi: 10.1108/JFC-05-2020-0093]
[12] Frankel T. The Ponzi Scheme Puzzle: A History and Analysis of Con Artists and Victims. New York: Oxford University Press, 2012.
[doi: 10.1093/acprof:osobl/9780199926619.001.0001]
[13] Vasek M, Moore T. Analyzing the bitcoin Ponzi scheme ecosystem. In: Proc. of the 2018 Int’l Workshops on Financial Cryptography and
Data Security. Nieuwpoort: Springer, 2019. 101–112. [doi: 10.1007/978-3-662-58820-8_8]
[14] Vasek M, Moore T. There’s no free lunch, even using bitcoin: Tracking the popularity and profits of virtual currency scams. In: Proc. of
the 19th Int’l Conf. Financial Cryptography and Data Security. San Juan: Springer, 2015. 44–61. [doi: 10.1007/978-3-662-47854-7_4]
[15] Moore T, Han J, Clayton R. The postmodern Ponzi scheme: Empirical analysis of high-yield investment programs. In: Proc. of the 16th
Int’l Conf. on Financial Cryptography and Data Security. Kralendijk: Springer, 2012. 41–56. [doi: 10.1007/978-3-642-32946-3_4]
[16] Hock B, Button M. Why do people join pyramid schemes? Journal of Financial Crime, 2023, 30(5): 1130–1139. [doi: 10.1108/JFC-09-
2022-0225]
[17] Song LL, Kong XH. A study on characteristics and identification of smart Ponzi schemes. IEEE Access, 2022, 10: 57299–57308. [doi: 10.
1109/ACCESS.2022.3178747]
[18] Chen WM, Li XR, Sui YT, He NY, Wang HY, Wu L, Luo XP. Sadponzi: Detecting and characterizing Ponzi schemes in Ethereum smart
contracts. Proc. of the ACM on Measurement and Analysis of Computing Systems, 2021, 5(2): 26. [doi: 10.1145/3460093]
[19] Bartoletti M, Carta S, Cimoli T, Saia R. Dissecting Ponzi schemes on Ethereum: Identification, analysis, and impact. Future Generation
Computer Systems, 2020, 102: 259–277. [doi: 10.1016/j.future.2019.08.014]
[20] Liu YJ, Liu B. A normalized Levenshtein distance metric. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29(6):
1091–1095. [doi: 10.1109/TPAMI.2007.1078]
[21] Chen WL, Zheng ZB, Ngai ECH, Zheng PL, Zhou YR. Exploiting blockchain data to detect smart Ponzi schemes on Ethereum. IEEE
Access, 2019, 7: 37575–37586. [doi: 10.1109/ACCESS.2019.2905769]
[22] Zhang YM, Yu WQ, Li ZY, Raza S, Cao HH. Detecting Ethereum Ponzi schemes based on improved LightGBM algorithm. IEEE Trans.
on Computational Social Systems, 2022, 9(2): 624–637. [doi: 10.1109/TCSS.2021.3088145]
[23] Shen XJ, Jiang SM, Zhang L. Mining bytecode features of smart contracts to detect Ponzi scheme on blockchain. Computer Modeling in
Engineering and Sciences, 2021, 127(3): 1069–1085. [doi: 10.32604/cmes.2021.015736]
[24] Zhang YM, Kang SQ, Dai W, Chen SP, Zhu ZM. Code will speak: Early detection of Ponzi smart contracts on Ethereum. In: Proc. of the
2021 IEEE Int’l Conf. on Services Computing. Chicago: IEEE, 2021. 301–308. [doi: 10.1109/SCC53864.2021.00043]
[25] Wang L, Cheng H, Zheng ZB, Yang AJ, Zhu XH. Ponzi scheme detection via oversampling-based long short-term memory for smart
contracts. Knowledge-based Systems, 2021, 228: 107312. [doi: 10.1016/j.knosys.2021.107312]
[26] Sun WS, Xu GY, Yang ZJ, Chen ZY. Early detection of smart Ponzi scheme contracts based on behavior forest similarity. In: Proc. of the
20th IEEE Int’l Conf. on Software Quality, Reliability and Security. Macao: IEEE, 2020. 297–309. [doi: 10.1109/QRS51102.2020.00047]
[27] Jung E, Tilly ML, Gehani A, Ge YJ. Data mining-based Ethereum fraud detection. In: Proc. of the 2019 IEEE Int’l Conf. on Blockchain.

