Page 415 - 《软件学报》2025年第9期
P. 415
4326 软件学报 2025 年第 36 卷第 9 期
[25] Zhao LL, Wu AB, Yuan Y, Li Y, Wang GR. Graph representation learning on location-based social networks. Chinese Journal of
Computers, 2022, 45(4): 838–857 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2022.00838]
[26] Qin M, Zhang CR, Bai B, Zhang G, Yeung DY. High-quality temporal link prediction for weighted dynamic graphs via inductive
embedding aggregation. IEEE Trans. on Knowledge and Data Engineering, 2023, 35(9): 9378–9393. [doi: 10.1109/TKDE.2023.3238360]
[27] Yin YT, Wu YJ, Yang XB, Zhang WS, Yuan XJ. Super resolution graph with conditional normalizing flows for temporal link prediction.
IEEE Trans. on Knowledge and Data Engineering, 2024, 36(3): 1311–1327. [doi: 10.1109/TKDE.2023.3295367]
[28] Mei P, Zhao YH. Dynamic network link prediction with node representation learning from graph convolutional networks. Scientific
Reports, 2024, 14(1): 538. [doi: 10.1038/s41598-023-50977-6]
[29] Chen XQ, Wu SB, Shi CJ, Huang YG, Yang YS, Ke RM, Zhao JS. Sensing data supported traffic flow prediction via denoising schemes
and ANN: A comparison. IEEE Sensors Journal, 2020, 20(23): 14317–14328. [doi: 10.1109/JSEN.2020.3007809]
[30] Sankar A, Wu YH, Gou L, Zhang W, Yang H. DySAT: Deep neural representation learning on dynamic graphs via self-attention
networks. In: Proc. of the 13th Int’l Conf. on Web Search and Data Mining. Houston: ACM, 2020. 519–527. [doi: 10.1145/3336191.
3371845]
[31] Guo SN, Lin YF, Feng N, Song C, Wan HY. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting.
In: Proc. of the 33rd AAAI Conf. on Artificial Intelligence. Honolulu: AAAI, 2019. 922–929. [doi: 10.1609/aaai.v33i01.3301922]
[32] Chen JY, Zhang J, Xu XH, Fu CB, Zhang D, Zhang QP, Xuan Q. E-LSTM-D: A deep learning framework for dynamic network link
prediction. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2021, 51(6): 3699–3712. [doi: 10.1109/TSMC.2019.2932913]
[33] Rossi R, Ahmed N. The network data repository with interactive graph analytics and visualization. In: Proc. of the 29th AAAI Conf. on
Artificial Intelligence. Austin: AAAI, 2015. 4292–4293. [doi: 10.1609/aaai.v29i1.9277]
[34] Kunegis J. Konect: The Koblenz network collection. In: Proc. of the 22nd Int’l Conf. World Wide Web. Rio de Janeiro: ACM, 2013.
1343–1350. [doi: 10.1145/2487788.2488173]
[35] Lei K, Qin M, Bai B, Zhang G, Yang M. GCN-GAN: A non-linear temporal link prediction model for weighted dynamic networks. In:
Proc. of the 2019 IEEE Conf. on Computer Communications. Paris: IEEE, 2019. 388–396. [doi: 10.1109/INFOCOM.2019.8737631]
附中文参考文献:
[23] 刘林峰, 于子兴, 祝贺. 基于门控循环单元的移动社会网络链路预测方法. 计算机研究与发展, 2023, 60(3): 705–716. [doi: 10.7544/
issn1000-1239.202110432]
[24] 何鹏, 卫操, 吕晟凯, 曾诚, 李兵. 基于 GoGCN 的软件系统类交互关系预测. 软件学报, 2023, 34(11): 5029–5041. http://www.jos.org.
cn/1000-9825/6678.htm [doi: 10.13328/j.cnki.jos.006678]
[25] 赵琳琳, 吴安彪, 袁野, 李扬, 王国仁. 位置社交网络上的图表示学习. 计算机学报, 2022, 45(4): 838–857. [doi: 10.11897/SP.J.
1016.2022.00838]
何玉林(1982-), 男, 博士, 研究员, CCF 专业会 尹剑飞(1974-), 男, 博士, 副教授, 主要研究领
员, 主要研究领域为大数据系统计算技术, 多样 域为大数据, 机器学习, 统计和数值优化.
本统计分析方法, 机器学习算法及应用.
赖俊龙(2000-), 男, 硕士生, 主要研究领域为图 黄哲学(1959-), 男, 博士, 教授, 博士生导师,
数据挖掘, 时空序列分析, 链路预测. CCF 专业会员, 主要研究领域为大数据系统计
算技术, 机器学习算法及应用.
崔来中(1984-), 男, 博士, 教授, 博士生导师, 主
要研究领域为互联网体系结构, 边缘计算, AI 驱
动的新型网络优化设计.

