Page 415 - 《软件学报》2025年第9期
P. 415

4326                                                       软件学报  2025  年第  36  卷第  9  期


                 [25]   Zhao  LL,  Wu  AB,  Yuan  Y,  Li  Y,  Wang  GR.  Graph  representation  learning  on  location-based  social  networks.  Chinese  Journal  of
                     Computers, 2022, 45(4): 838–857 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2022.00838]
                 [26]   Qin  M,  Zhang  CR,  Bai  B,  Zhang  G,  Yeung  DY.  High-quality  temporal  link  prediction  for  weighted  dynamic  graphs  via  inductive
                     embedding aggregation. IEEE Trans. on Knowledge and Data Engineering, 2023, 35(9): 9378–9393. [doi: 10.1109/TKDE.2023.3238360]
                 [27]   Yin YT, Wu YJ, Yang XB, Zhang WS, Yuan XJ. Super resolution graph with conditional normalizing flows for temporal link prediction.
                     IEEE Trans. on Knowledge and Data Engineering, 2024, 36(3): 1311–1327. [doi: 10.1109/TKDE.2023.3295367]
                 [28]   Mei  P,  Zhao  YH.  Dynamic  network  link  prediction  with  node  representation  learning  from  graph  convolutional  networks.  Scientific
                     Reports, 2024, 14(1): 538. [doi: 10.1038/s41598-023-50977-6]
                 [29]   Chen XQ, Wu SB, Shi CJ, Huang YG, Yang YS, Ke RM, Zhao JS. Sensing data supported traffic flow prediction via denoising schemes
                     and ANN: A comparison. IEEE Sensors Journal, 2020, 20(23): 14317–14328. [doi: 10.1109/JSEN.2020.3007809]
                 [30]   Sankar  A,  Wu  YH,  Gou  L,  Zhang  W,  Yang  H.  DySAT:  Deep  neural  representation  learning  on  dynamic  graphs  via  self-attention
                     networks. In: Proc. of the 13th Int’l Conf. on Web Search and Data Mining. Houston: ACM, 2020. 519–527. [doi: 10.1145/3336191.
                     3371845]
                 [31]   Guo SN, Lin YF, Feng N, Song C, Wan HY. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting.
                     In: Proc. of the 33rd AAAI Conf. on Artificial Intelligence. Honolulu: AAAI, 2019. 922–929. [doi: 10.1609/aaai.v33i01.3301922]
                 [32]   Chen JY, Zhang J, Xu XH, Fu CB, Zhang D, Zhang QP, Xuan Q. E-LSTM-D: A deep learning framework for dynamic network link
                     prediction. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2021, 51(6): 3699–3712. [doi: 10.1109/TSMC.2019.2932913]
                 [33]   Rossi R, Ahmed N. The network data repository with interactive graph analytics and visualization. In: Proc. of the 29th AAAI Conf. on
                     Artificial Intelligence. Austin: AAAI, 2015. 4292–4293. [doi: 10.1609/aaai.v29i1.9277]
                 [34]   Kunegis J. Konect: The Koblenz network collection. In: Proc. of the 22nd Int’l Conf. World Wide Web. Rio de Janeiro: ACM, 2013.
                     1343–1350. [doi: 10.1145/2487788.2488173]
                 [35]   Lei K, Qin M, Bai B, Zhang G, Yang M. GCN-GAN: A non-linear temporal link prediction model for weighted dynamic networks. In:
                     Proc. of the 2019 IEEE Conf. on Computer Communications. Paris: IEEE, 2019. 388–396. [doi: 10.1109/INFOCOM.2019.8737631]


                 附中文参考文献:
                 [23]   刘林峰, 于子兴, 祝贺. 基于门控循环单元的移动社会网络链路预测方法. 计算机研究与发展, 2023, 60(3): 705–716. [doi: 10.7544/
                     issn1000-1239.202110432]
                 [24]   何鹏, 卫操, 吕晟凯, 曾诚, 李兵. 基于  GoGCN  的软件系统类交互关系预测. 软件学报, 2023, 34(11): 5029–5041. http://www.jos.org.
                     cn/1000-9825/6678.htm [doi: 10.13328/j.cnki.jos.006678]
                 [25]   赵琳琳, 吴安彪, 袁野, 李扬, 王国仁. 位置社交网络上的图表示学习. 计算机学报, 2022, 45(4): 838–857. [doi: 10.11897/SP.J.
                     1016.2022.00838]


                             何玉林(1982-), 男, 博士, 研究员, CCF  专业会             尹剑飞(1974-), 男, 博士, 副教授, 主要研究领
                            员, 主要研究领域为大数据系统计算技术, 多样                      域为大数据, 机器学习, 统计和数值优化.
                            本统计分析方法, 机器学习算法及应用.



                             赖俊龙(2000-), 男, 硕士生, 主要研究领域为图                 黄哲学(1959-), 男, 博士, 教授, 博士生导师,

                            数据挖掘, 时空序列分析, 链路预测.                          CCF  专业会员, 主要研究领域为大数据系统计

                                                                         算技术, 机器学习算法及应用.



                             崔来中(1984-), 男, 博士, 教授, 博士生导师, 主

                            要研究领域为互联网体系结构, 边缘计算, AI 驱

                            动的新型网络优化设计.
   410   411   412   413   414   415   416   417   418   419   420