Page 398 - 《软件学报》2025年第9期
P. 398

王尚 等: 基于神经网络的分布式追踪数据压缩和查询方法                                                     4309


                 [20]   Huffman D A. A method for the construction of minimum-redundancy codes. Proc. of the IRE, 1952, 40(9): 1098–1101. [doi: 10.1109/
                     JRPROC.1952.273898]
                 [21]   Grafana Labs. Grafana Tempo. 2024. https://grafana.com/oss/tempo/
                 [22]   Jaeger. Jaeger: Open source, distributed tracing platform. 2024. https://www.jaegertracing.io/
                 [23]   Witten IH, Neal RM, Cleary JG. Arithmetic coding for data compression. Communications of the ACM, 1987, 30(6): 520–540. [doi: 10.
                     1145/214762.214771]
                 [24]   Merhav  N,  Gutman  M,  Ziv  J.  On  the  estimation  of  the  order  of  a  Markov  chain  and  universal  data  compression.  IEEE  Trans.  on
                     Information Theory, 1989, 35(5): 1014–1019. [doi: 10.1109/18.42210]
                 [25]   Deutsch P. DEFLATE compressed data format specification version 1.3. 1996. [doi: 10.17487/RFC1951]
                 [26]   Moffat A. Implementing the PPM data compression scheme. IEEE Trans. on Communications, 1990, 38(11): 1917–1921. [doi: 10.1109/
                     26.61469]
                 [27]   Goyal M, Tatwawadi K, Chandak S, Ochoa I. DZip: Improved general-purpose loss less compression based on novel neural network
                     modeling. In: Proc. of the 2021 Data Compression Conf. (DCC). Snowbird: IEEE, 2021. 153–162. [doi: 10.1109/DCC50243.2021.00023]
                 [28]   Schmidhuber J, Heil S. Sequential neural text compression. IEEE Trans. on Neural Networks, 1996, 7(1): 142–146. [doi: 10.1109/72.
                     478398]
                 [29]   Mahoney MV. Fast text compression with neural networks. In: Proc. of the 13th Int’l Florida Artificial Intelligence Research Society
                     Conf. Orlando: AAAI Press, 2000. 230–234.
                 [30]   Liu Q, Xu YL, Li Z. DecMac: A deep context model for high efficiency arithmetic coding. In: Proc. of the 2019 Int’l Conf. on Artificial
                     Intelligence in Information and Communication (ICAIIC). Okinawa: IEEE, 2019. 438–443. [doi: 10.1109/ICAIIC.2019.8668843]
                 [31]   Bellard F. Lossless data compression with neural networks. 2019. https://bellard.org/nncp/nncp.pdf
                 [32]   Goyal M, Tatwawadi K, Chandak S, Ochoa I DeepZip: Lossless data compression using recurrent neural networks. arXiv:1811.08162,
                     2018.
                 [33]   Mao Y, Cui YF, Kuo TW, Xue CJ. TRACE: A fast transformer-based general-purpose lossless compressor. In: Proc. of the 2022 ACM
                     Web Conf. ACM, 2022. 1829–1838. [doi: 10.1145/3485447.3511987]
                 [34]   Wei JY, Zhang GY, Wang Y, Liu ZW, Zhu ZY, Chen JC, Sun TT, Zhou Q. On the feasibility of parser-based log compression in large-
                     scale cloud systems. In: Proc. of the 19th USENIX Conf. on File and Storage Technologies. USENIX Association, 2021. 249–262.
                 [35]   Yao KD, Sayagh M, Shang WY, Hassan AE. Improving state-of-the-art compression techniques for log management tools. IEEE Trans.
                     on Software Engineering, 2022, 48(8): 2748–2760. [doi: 10.1109/TSE.2021.3069958]
                 [36]   Christensen R, Li FF. Adaptive log compression for massive log data. In: Proc. of the 2013 ACM SIGMOD Int’l Conf. on Management
                     of Data. New York: ACM, 2013. 1283–1284. [doi: 10.1145/2463676.2465341]
                 [37]   Lin H, Zhou JY, Yao B, Guo MY, Li J. Cowic: A column-wise independent compression for log stream analysis. In: Proc. of the 15th
                     IEEE/ACM Int’l Symp. on Cluster, Cloud and Grid Computing. Shenzhen: IEEE, 2015. 21–30. [doi: 10.1109/CCGrid.2015.45]
                 [38]   Liu JY, Zhu JM, He SL, He PJ, Zheng ZB, Lyu MR. Logzip: Extracting hidden structures via iterative clustering for log compression. In:
                     Proc. of the 34th IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE). San Diego: IEEE, 2019. 863–873. [doi: 10.1109/
                     ASE.2019.00085]
                 [39]   Rodrigues K, Luo Y, Yuan D. CLP: Efficient and scalable search on compressed text logs. In: Proc. of the 15th USENIX Symp. on
                     Operating Systems Design and Implementation. USENIX Association, 2021. 183–198.
                 [40]   Ding  HL,  Yan  S,  Zhai  J,  Ma  SQ.  ELISE:  A  storage  efficient  logging  system  powered  by  redundancy  reduction  and  representation
                     learning. In: Proc. of the 30th USENIX Security Symp. USENIX Association, 2021. 3023–3040.
                 [41]   Li XY, Zhang HY, Le VH, Chen PF. LogShrink: Effective log compression by leveraging commonality and variability of log data. In:
                     Proc. of the 46th IEEE/ACM Int’l Conf. on Software Engineering. Lisbon: ACM, 2024. 23. [doi: 10.1145/3597503.3608129]
                 [42]   Agarwal R, Khandelwal A, Stoica I. Succinct: Enabling queries on compressed data. In: Proc. of the 12th USENIX Symp. on Networked
                     Systems Design and Implementation. Oakland: USENIX Association, 2015. 337–350.
                 [43]   Pibiri GE, Petri M, Moffat A. Fast dictionary-based compression for inverted indexes. In: Proc. of the 12th ACM Int’l Conf. on Web
                     Search and Data Mining. Melbourne: ACM, 2019. 6–14. [doi: 10.1145/3289600.3290962]
                 [44]   Zhang F, Zhai JD, Shen XP, Wang DL, Chen Z, Mutlu O, Chen WG, Du XY. TADOC: Text analytics directly on compression. The
                     VLDB Journal, 2021, 30(2): 163–188. [doi: 10.1007/s00778-020-00636-3]
                 [45]   Wei JY, Zhang GY, Chen JC, Wang Y, Zheng WM, Sun TT, Wu JS, Jiang JW. LogGrep: Fast and cheap cloud log storage by exploiting
                     both static and runtime patterns. In: Proc. of the 18th European Conf. on Computer Systems. Rome: ACM, 2023. 452–468. [doi: 10.1145/
                     3552326.3567484]
   393   394   395   396   397   398   399   400   401   402   403