Page 397 - 《软件学报》2025年第9期
P. 397

4308                                                       软件学报  2025  年第  36  卷第  9  期


                 究如何利用分布式集群对         NCQT  水平扩展, 进一步提高算法的并行度, 从而更高效地压缩和查询分布式追踪数据.

                 References:
                  [1]   Yang Y, Li Y, Wu ZH. Survey of state-of-the-art distributed tracing technology. Ruan Jian Xue Bao/Journal of Software, 2020, 31(7):
                     2019–2039 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6047.htm [doi: 10.13328/j.cnki.jos.006047]
                  [2]   Zhang  ZZ,  Ramanathan  MK,  Raj  P,  Parwal  A,  Sherwood  T,  Chabbi  M.  CRISP:  Critical  path  analysis  of  large-scale  microservice
                     architectures. In: Proc. of the 2022 USENIX Annual Technical Conf. Carlsbad: USENIX Association, 2022. 655–672.
                  [3]   Zhang  YZ,  Isaacs  R,  Yue  Y,  Yang  JC,  Zhang  L,  Vigfusson  Y.  LatenSeer:  Causal  modeling  of  end-to-end  latency  distributions  by
                     harnessing distributed tracing. In: Proc. of the 2023 ACM Symp. on Cloud Computing. Santa Cruz: ACM, 2023. 502–519. [doi: 10.1145/
                     3620678.3624787]
                  [4]   Zhang CX, Peng X, Sha CF, Zhang K, Fu ZQ, Wu XY, Lin QW, Zhang DM. DeepTraLog: Trace-log combined microservice anomaly
                     detection through graph-based deep learning. In: Proc. of the 44th Int’l Conf. on Software Engineering. Pittsburgh: ACM, 2022. 623–634.
                     [doi: 10.1145/3510003.3510180]
                  [5]   Zhang K, Zhang CX, Peng X, Sha CF. PUTraceAD: Trace anomaly detection with partial labels based on GNN and PU learning. In: Proc.
                     of the 33rd IEEE Int’l Symp. on Software Reliability Engineering (ISSRE). Charlotte: IEEE, 2022. 239–250. [doi: 10.1109/ISSRE55969.
                     2022.00032]
                  [6]   Zhou T, Zhang CX, Peng X, Yan ZH, Li PR, Liang JM, Zheng HB, Zheng WJ, Deng YT. TraceStream: Anomalous service localization
                     based  on  trace  stream  clustering  with  online  feedback.  In:  Proc.  of  the  34th  IEEE  Int’l  Symp.  on  Software  Reliability  Engineering
                     (ISSRE). Florence: IEEE, 2023. 601–611. [doi: 10.1109/ISSRE59848.2023.00033]
                  [7]   Liu JS, Wang QY, Zhang SG, Hu LT, Da Silva D. Sora: A latency sensitive approach for microservice soft resource adaptation. In: Proc.
                     of the 24th Int’l Middleware Conf. Bologna: ACM, 2023. 43–56. [doi: 10.1145/3590140.3592851]
                  [8]   Huang LX, Zhu T. tprof: Performance profiling via structural aggregation and automated analysis of distributed systems traces. In: Proc.
                     of the 2021 ACM Symp. on Cloud Computing. Seattle: ACM, 2021. 76–91. [doi: 10.1145/3472883.3486994]
                  [9]   Huang ZC, Chen PF, Yu GB, Chen HY. Transparent request tracing and sampling method for Java-based microservice system. Ruan Jian
                     Xue Bao/Journal of Software, 2023, 34(7): 3167–3187 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6523.htm
                     [doi: 10.13328/j.cnki.jos.006523]
                 [10]   Peng X, Zhang CX, Zhao ZY, Isami A, Guo XF, Cui YN. Trace analysis based microservice architecture measurement. In: Proc. of the
                     30th ACM Joint European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. Singapore: ACM, 2022.
                     1589–1599. [doi: 10.1145/3540250.3558951]
                 [11]   He SL, Feng BT, Li LQ, Zhang X, Kang Y, Lin QW, Rajmohan S, Zhang DM. STEAM: Observability-preserving trace sampling. In:
                     Proc.  of  the  31st  ACM  Joint  European  Software  Engineering  Conf.  and  Symp.  on  the  Foundations  of  Software  Engineering.  San
                     Francisco: ACM, 2023. 1750–1761. [doi: 10.1145/3611643.3613881]
                 [12]   Gias AU, Gao YC, Sheldon M, Perusquía JA, O’Brien O, Casale G. SampleHST: Efficient on-the-fly selection of distributed traces. In:
                     Proc.  of  the  2023  IEEE/IFIP  Network  Operations  and  Management  Symp.  (NOMS  2023).  Miami:  IEEE,  2023.  1–9.  [doi:  10.1109/
                     NOMS56928.2023.10154383]
                 [13]   Zhou H, Chen M, Lin Q, Wang Y, She XB, Liu SF, Gu R, Ooi BC, Yang JF. Overload control for scaling WeChat microservices. In:
                     Proc. of the 2018 ACM Symp. on Cloud Computing. Carlsbad: ACM, 2018. 149–161. [doi: 10.1145/3267809.3267823]
                 [14]   Annamalai M, Ravichandran K, Srinivas H, Zinkovsky I, Pan LN, Savor T, Nagle D, Stumm M. Sharding the shards: Managing datastore
                     locality  at  scale  with  Akkio.  In:  Proc.  of  the  13th  USENIX  Symp.  on  Operating  Systems  Design  and  Implementation  (OSDI  2018).
                     Carlsbad: USENIX Association, 2018. 445–460.
                 [15]   Las-Casas P, Mace J, Guedes D, Fonseca R. Weighted sampling of execution traces: Capturing more needles and less hay. In: Proc. of the
                     2018 ACM Symp. on Cloud Computing. Carlsbad: ACM, 2018. 326–332. [doi: 10.1145/3267809.3267841]
                 [16]   Las-Casas P, Papakerashvili G, Anand V, Mace J. Sifter: Scalable sampling for distributed traces, without feature engineering. In: Proc. of
                     the 2019 ACM Symp. on Cloud Computing. Santa Cruz: ACM, 2019. 312–324. [doi: 10.1145/3357223.3362736]
                 [17]   Huang ZC, Chen PF, Yu GB, Chen HY, Zheng ZB. Sieve: Attention-based sampling of end-to-end trace data in distributed microservice
                     systems. In: Proc. of the 2021 IEEE Int’l Conf. on Web Services (ICWS). Chicago: IEEE, 2021. 436–446. [doi: 10.1109/ICWS53863.
                     2021.00063]
                 [18]   Free Software Foundation. GNU gzip. 2024. https://www.gnu.org/software/gzip/
                 [19]   Ziv J, Lempel A. A universal algorithm for sequential data compression. IEEE Trans. on Information Theory, 1977, 23(3): 337–343. [doi:
                     10.1109/TIT.1977.1055714]
   392   393   394   395   396   397   398   399   400   401   402