Page 328 - 《软件学报》2025年第9期
P. 328
韩将 等: 面向跨信任域互联网场景的拜占庭容错访问控制架构 4239
[19] Laamech N, Munier M, Pham C. Translating usage control policies to semantic rules: A model using OrBAC and SWRL. Procedia
Computer Science, 2023, 225: 1881–1890. [doi: 10.1016/j.procs.2023.10.178]
[20] Yuan E, Tong J. Attributed based access control (ABAC) for Web services. In: Proc. of the 2005 IEEE Int’l Conf. on Web Services.
Orlando: IEEE, 2005. 561–569. [doi: 10.1109/ICWS.2005.25]
[21] Hu VC, Ferraiolo D, Kuhn R, Schnitzer A, Sandlin K, Miller R, Scarfone K. Guide to attribute based access control (ABAC) definition
and considerations. Gaithersburg: National Institute of Standards and Technology, 2014.
[22] Shang SY, Wang XH, Liu AD. ABAC policy mining method based on hierarchical clustering and relationship extraction. Computers &
Security, 2024, 139: 103717. [doi: 10.1016/j.cose.2024.103717]
[23] Choksy P, Chaurasia A, Rao UP, Kumar S. Attribute based access control (ABAC) scheme with a fully flexible delegation mechanism for
IoT healthcare. Peer-to-peer Networking and Applications, 2023, 16(3): 1445–1467. [doi: 10.1007/s12083-023-01486-w]
[24] Liu YF, Zhao B, An Y, Guo JB. DACAS: Integration of attribute-based access control for northbound interface security in SDN. World
Wide Web, 2023, 26(4): 2143–2173. [doi: 10.1007/s11280-022-01130-2]
[25] Perez-Haro A, Diaz-Perez A. Attribute-based access control rules supported by biclique patterns. In: Proc. of the 9th Int’l Conf. on Big
Data Computing Service and Applications (BigDataService). Athens: IEEE, 2023. 95–102. [doi: 10.1109/BigDataService58306.2023.
00020]
[26] Ruan CH, Hu CQ, Li XW, Deng SJ, Liu ZW, Yu JG. A revocable and fair outsourcing attribute-based access control scheme in
metaverse. IEEE Trans. on Consumer Electronics, 2024, 70(1): 3781–3791. [doi: 10.1109/TCE.2024.3377107]
[27] Guo BY, Lu ZL, Tang Q, Xu J, Zhang ZF. Dumbo: Faster asynchronous BFT protocols. In: Proc. of the 2020 ACM SIGSAC Conf. on
Computer and Communications Security. New York: Association for Computing Machinery, 2020. 803–818. [doi: 10.1145/3372297.
3417262]
[28] Bai QH, Zheng Y. Study on the access control model. In: Proc. of the 2011 Cross Strait Quad-regional Radio Science and Wireless
Technology Conf. Harbin: IEEE, 2011. 830–834. [doi: 10.1109/CSQRWC.2011.6037079]
[29] Lin C, Feng FJ, Li JS. Access control in new network environment. Ruan Jian Xue Bao/Journal of Software, 2007, 18(4): 955–966 (in
Chinese with English abstract). http://www.jos.org.cn/1000-9825/18/955.htm
[30] Wang YD, Yang JH, Xu C, Ling X, Yang Y. Survey on access control technologies for cloud computing. Ruan Jian Xue Bao/Journal of
Software, 2015, 26(5): 1129–1150 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4820.htm [doi: 10.13328/j.cnki.
jos.004820]
[31] Jemel M, Serhrouchni A. Decentralized access control mechanism with temporal dimension based on blockchain. In: Proc. of the 14th
IEEE Int’l Conf. on e-Business Engineering (ICEBE). Shanghai: IEEE, 2017. 177–182. [doi: 10.1109/ICEBE.2017.35]
[32] Ravidas S, Lekidis A, Paci F, Zannone N. Access control in Internet-of-Things: A survey. Journal of Network and Computer
Applications, 2019, 144: 79–101. [doi: 10.1016/j.jnca.2019.06.017]
[33] Paillisse J, Subira J, Lopez A, Rodriguez-Natal A, Ermagan V, Maino F, Cabellos A. Distributed access control with blockchain. In: Proc.
of the 2019 IEEE Int’l Conf. on Communications (ICC). Shanghai: IEEE, 2019. 1–6. [doi: 10.1109/ICC.2019.8761995]
[34] Cruz JP, Kaji Y, Yanai N. RBAC-SC: Role-based access control using smart contract. IEEE Access, 2018, 6: 12240–12251. [doi: 10.1109/
ACCESS.2018.2812844]
[35] Hardjono T, Pentland A. Verifiable anonymous identities and access control in permissioned blockchains. arXiv:1903.04584, 2019.
[36] Anjana PS, Kumari S, Peri S, Rathor S, Somani A. An efficient framework for optimistic concurrent execution of smart contracts. In:
Proc. of the 27th Euromicro Int’l Conf. on Parallel, Distributed and Network-Based Processing (PDP). Pavia: IEEE, 2019. 83–92. [doi: 10.
1109/EMPDP.2019.8671637]
[37] Dickerson T, Gazzillo P, Herlihy M, Koskinen E. Adding concurrency to smart contracts. In: Proc. of the 2017 ACM Symp. on Principles
of Distributed Computing. Washington: Association for Computing Machinery, 2017. 303–312. [doi: 10.1145/3087801.3087835]
[38] Lamport L, Shostak R, Pease M. The Byzantine generals problem. ACM Trans. on Programming Languages and Systems (TOPLAS).
ACM, 1982, 4(3): 382–401. [doi: 10.1145/357172.357176]
[39] Cachin C, Kursawe K, Petzold F, Shoup V. Secure and efficient asynchronous broadcast protocols. In: Proc. of the 21st Annual Int’l
Cryptology Conf. (CRYPTO). Santa Barbara: Springer, 2001. 524–541. [doi: 10.1007/3-540-44647-8_31]
[40] Boldyreva A. Threshold signatures, multisignatures and blind signatures based on the Gap-Diffie-Hellman-Group signature scheme. In:
Proc. of the 6th Int’l Workshop on Theory and Practice in Public Key Cryptography. Springer, 2003, 31–46. [doi: 10.5555/648120.
747061]
[41] Baek J, Zheng YL. Simple and efficient threshold cryptosystem from the gap Diffie-Hellman group. In: Proc. of the 2003 IEEE Global
Telecommunications Conf. San Francisco: IEEE, 2003. 1491–1495. [doi: 10.1109/GLOCOM.2003.1258486]

