Page 328 - 《软件学报》2025年第9期
P. 328

韩将 等: 面向跨信任域互联网场景的拜占庭容错访问控制架构                                                   4239


                 [19]   Laamech  N,  Munier  M,  Pham  C.  Translating  usage  control  policies  to  semantic  rules:  A  model  using  OrBAC  and  SWRL.  Procedia
                     Computer Science, 2023, 225: 1881–1890. [doi: 10.1016/j.procs.2023.10.178]
                 [20]   Yuan E, Tong J. Attributed based access control (ABAC) for Web services. In: Proc. of the 2005 IEEE Int’l Conf. on Web Services.
                     Orlando: IEEE, 2005. 561–569. [doi: 10.1109/ICWS.2005.25]
                 [21]   Hu VC, Ferraiolo D, Kuhn R, Schnitzer A, Sandlin K, Miller R, Scarfone K. Guide to attribute based access control (ABAC) definition
                     and considerations. Gaithersburg: National Institute of Standards and Technology, 2014.
                 [22]   Shang SY, Wang XH, Liu AD. ABAC policy mining method based on hierarchical clustering and relationship extraction. Computers &
                     Security, 2024, 139: 103717. [doi: 10.1016/j.cose.2024.103717]
                 [23]   Choksy P, Chaurasia A, Rao UP, Kumar S. Attribute based access control (ABAC) scheme with a fully flexible delegation mechanism for
                     IoT healthcare. Peer-to-peer Networking and Applications, 2023, 16(3): 1445–1467. [doi: 10.1007/s12083-023-01486-w]
                 [24]   Liu YF, Zhao B, An Y, Guo JB. DACAS: Integration of attribute-based access control for northbound interface security in SDN. World
                     Wide Web, 2023, 26(4): 2143–2173. [doi: 10.1007/s11280-022-01130-2]
                 [25]   Perez-Haro A, Diaz-Perez A. Attribute-based access control rules supported by biclique patterns. In: Proc. of the 9th Int’l Conf. on Big
                     Data  Computing  Service  and  Applications  (BigDataService).  Athens:  IEEE,  2023.  95–102.  [doi:  10.1109/BigDataService58306.2023.
                     00020]
                 [26]   Ruan  CH,  Hu  CQ,  Li  XW,  Deng  SJ,  Liu  ZW,  Yu  JG.  A  revocable  and  fair  outsourcing  attribute-based  access  control  scheme  in
                     metaverse. IEEE Trans. on Consumer Electronics, 2024, 70(1): 3781–3791. [doi: 10.1109/TCE.2024.3377107]
                 [27]   Guo BY, Lu ZL, Tang Q, Xu J, Zhang ZF. Dumbo: Faster asynchronous BFT protocols. In: Proc. of the 2020 ACM SIGSAC Conf. on
                     Computer  and  Communications  Security.  New  York:  Association  for  Computing  Machinery,  2020.  803–818.  [doi:  10.1145/3372297.
                     3417262]
                 [28]   Bai QH, Zheng Y. Study on the access control model. In: Proc. of the 2011 Cross Strait Quad-regional Radio Science and Wireless
                     Technology Conf. Harbin: IEEE, 2011. 830–834. [doi: 10.1109/CSQRWC.2011.6037079]
                 [29]   Lin C, Feng FJ, Li JS. Access control in new network environment. Ruan Jian Xue Bao/Journal of Software, 2007, 18(4): 955–966 (in
                     Chinese with English abstract). http://www.jos.org.cn/1000-9825/18/955.htm
                 [30]   Wang YD, Yang JH, Xu C, Ling X, Yang Y. Survey on access control technologies for cloud computing. Ruan Jian Xue Bao/Journal of
                     Software, 2015, 26(5): 1129–1150 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4820.htm [doi: 10.13328/j.cnki.
                     jos.004820]
                 [31]   Jemel M, Serhrouchni A. Decentralized access control mechanism with temporal dimension based on blockchain. In: Proc. of the 14th
                     IEEE Int’l Conf. on e-Business Engineering (ICEBE). Shanghai: IEEE, 2017. 177–182. [doi: 10.1109/ICEBE.2017.35]
                 [32]   Ravidas  S,  Lekidis  A,  Paci  F,  Zannone  N.  Access  control  in  Internet-of-Things:  A  survey.  Journal  of  Network  and  Computer
                     Applications, 2019, 144: 79–101. [doi: 10.1016/j.jnca.2019.06.017]
                 [33]   Paillisse J, Subira J, Lopez A, Rodriguez-Natal A, Ermagan V, Maino F, Cabellos A. Distributed access control with blockchain. In: Proc.
                     of the 2019 IEEE Int’l Conf. on Communications (ICC). Shanghai: IEEE, 2019. 1–6. [doi: 10.1109/ICC.2019.8761995]
                 [34]   Cruz JP, Kaji Y, Yanai N. RBAC-SC: Role-based access control using smart contract. IEEE Access, 2018, 6: 12240–12251. [doi: 10.1109/
                     ACCESS.2018.2812844]
                 [35]   Hardjono T, Pentland A. Verifiable anonymous identities and access control in permissioned blockchains. arXiv:1903.04584, 2019.
                 [36]   Anjana PS, Kumari S, Peri S, Rathor S, Somani A. An efficient framework for optimistic concurrent execution of smart contracts. In:
                     Proc. of the 27th Euromicro Int’l Conf. on Parallel, Distributed and Network-Based Processing (PDP). Pavia: IEEE, 2019. 83–92. [doi: 10.
                     1109/EMPDP.2019.8671637]
                 [37]   Dickerson T, Gazzillo P, Herlihy M, Koskinen E. Adding concurrency to smart contracts. In: Proc. of the 2017 ACM Symp. on Principles
                     of Distributed Computing. Washington: Association for Computing Machinery, 2017. 303–312. [doi: 10.1145/3087801.3087835]
                 [38]   Lamport L, Shostak R, Pease M. The Byzantine generals problem. ACM Trans. on Programming Languages and Systems (TOPLAS).
                     ACM, 1982, 4(3): 382–401. [doi: 10.1145/357172.357176]
                 [39]   Cachin C, Kursawe K, Petzold F, Shoup V. Secure and efficient asynchronous broadcast protocols. In: Proc. of the 21st Annual Int’l
                     Cryptology Conf. (CRYPTO). Santa Barbara: Springer, 2001. 524–541. [doi: 10.1007/3-540-44647-8_31]
                 [40]   Boldyreva A. Threshold signatures, multisignatures and blind signatures based on the Gap-Diffie-Hellman-Group signature scheme. In:
                     Proc.  of  the  6th  Int’l  Workshop  on  Theory  and  Practice  in  Public  Key  Cryptography.  Springer,  2003,  31–46.  [doi:  10.5555/648120.
                     747061]
                 [41]   Baek J, Zheng YL. Simple and efficient threshold cryptosystem from the gap Diffie-Hellman group. In: Proc. of the 2003 IEEE Global
                     Telecommunications Conf. San Francisco: IEEE, 2003. 1491–1495. [doi: 10.1109/GLOCOM.2003.1258486]
   323   324   325   326   327   328   329   330   331   332   333