Page 221 - 《软件学报》2025年第9期
P. 221
4132 软件学报 2025 年第 36 卷第 9 期
[30] Zhou XH, Shen J. Survey on federated learning for medical application scenarios. Information Technology and Informatization, 2023,
(11): 135–141 (in Chinese). [doi: 10.3969/j.issn.1672-9528.2023.11.031]
[31] Sanh V, Debut L, Chaumond J, Wolf T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv:1910.01108,
2019.
[32] Jiao XQ, Yin YC, Shang LF, Jiang X, Chen X, Li LL, Wang F, Liu Q. TinyBERT: Distilling BERT for natural language understanding.
In: Proc. of the 2020 Findings of the Association for Computational Linguistics. Association for Computational Linguistics, 2020.
4163–4174. [doi: 10.18653/v1/2020.findings-emnlp.372]
[33] Lit Z, Sit S, Wang JZ, Xiao J. Federated split BERT for heterogeneous text classification. In: Proc. of the 2022 Int’l Joint Conf. on Neural
Networks (IJCNN). Padua: IEEE, 2022. 1–8. [doi: 10.1109/IJCNN55064.2022.9892845]
[34] Tian YYS, Wan Y, Lyu LJ, Yao DZ, Jin H, Sun LC. FEDBERT: When federated learning meets pre-training. ACM Trans. on Intelligent
Systems and Technology, 2022, 13(4): 66. [doi: 10.1145/3510033]
[35] Hao YR, Dong L, Wei FR, Xu K. Visualizing and understanding the effectiveness of BERT. In: Proc. of the 2019 Conf. on Empirical
Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural Language Processing (EMNLP-IJCNLP). Hong Kong:
Association for Computational Linguistics, 2019. 4143–4152. [doi: 10.18653/v1/D19-1424]
[36] Jawahar G, Sagot B, Seddah D. What does BERT learn about the structure of language? In: Proc. of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence: Association for Computational Linguistics, 2019. 3651–3657. [doi: 10.18653/v1/
P19-1356]
[37] Manginas N, Chalkidis I, Malakasiotis P. Layer-wise guided training for BERT: Learning incrementally refined document
representations. In: Proc. of the 4th Workshop on Structured Prediction for NLP. Association for Computational Linguistics, 2020. 53–61.
[doi: 10.18653/v1/2020.spnlp-1.7]
[38] Wang J, Chen K, Chen G, Shou LD, McAuley J. SkipBERT: Efficient inference with shallow layer skipping. In: Proc. of the 60th Annual
Meeting of the Association for Computational Linguistics (Vol. 1: Long Papers). Dublin: Association for Computational Linguistics,
2022. 7287–7301. [doi: 10.18653/v1/2022.acl-long.503]
[39] Fayek HM, Cavedon L, Wu HR. Progressive learning: A deep learning framework for continual learning. Neural Networks, 2020, 128:
345–357. [doi: 10.1016/j.neunet.2020.05.011]
[40] Lo K, Wang LL, Neumann M, Kinney R, Weld D. S2ORC: The semantic scholar open research corpus. In: Proc. of the 58th Annual
Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2020. 4969–4983. [doi: 10.18653/
v1/2020.acl-main.447]
[41] Liang Z, Wang HZ, Dai JJ, Shao XY, Ding XO, Mu TY. Interpretability of entity matching based on pre-trained language model. Ruan
Jian Xue Bao/Journal of Software, 2023, 34(3): 1087–1108 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6794.
htm [doi: 10.13328/j.cnki.jos.006794]
[42] Sheng XC, Chen DW. Research on text classification model based on federated learning and differential privacy. Journal of Information
Security Research, 2023, 9(12): 1145–1151 (in Chinese with English abstract). [doi: 10.12379/j.issn.2096-1057.2023.12.02]
[43] Li BH, Xiang YX, Feng D, He ZC, Wu JJ, Dai TL, Li J. Short text classification model combining knowledge aware and dual attention.
Journal of Software, 2022, 33(10): 3565–3581 (in Chinese with English abstract). [doi: 10.13328/j.cnki.jos.006630]
[44] Zhao JS, Song MX, Gao X, Zhu QM. Research on text representation in natural language processing. Ruan Jian Xue Bao/Journal of
Software, 2022, 33(1): 102–128 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6304.htm [doi: 10.13328/j.cnki.jos.
006304]
[45] Collier N, Ohta T, Tsuruoka Y, Tateisi Y, Kim JD. Introduction to the bio-entity recognition task at JNLPBA. In: Proc. of the 2004 Int’l
Joint Workshop on Natural Language Processing in Biomedicine and Its Applications (NLPBA/BioNLP). Geneva: COLING, 2004.
73–78.
[46] Luan Y, He LH, Ostendorf M, Hajishirzi H. Multi-task identification of entities, relations, and coreference for scientific knowledge graph
construction. In: Proc. of the 2018 Conf. on Empirical Methods in Natural Language Processing. Brussels: Association for Computational
Linguistics, 2018. 3219–3232. [doi: 10.18653/v1/D18-1360]
[47] Li J, Sun YP, Johnson RJ, Sciaky D, Wei CH, Leaman R, Davis AP, Mattingly CJ, Wiegers TC, Lu ZY. BioCreative V CDR task corpus:
A resource for chemical disease relation extraction. Database, 2016, 2016: baw068. [doi: 10.1093/database/baw068]
[48] Doğan RI, Leaman R, Lu ZY. NCBI disease corpus: A resource for disease name recognition and concept normalization. Journal of
Biomedical Informatics, 2014, 47: 1–10. [doi: 10.1016/j.jbi.2013.12.006]
[49] Kringelum J, Kjaerulff SK, Brunak S, Lund O, Oprea TI, Taboureau O. ChemProt-3.0: A global chemical biology diseases mapping.
Database, 2016, 2016: bav123. [doi: 10.1093/database/bav123]

