Page 36 - 《软件学报》2025年第8期
P. 36

刘宗鑫 等: 神经网络的增量验证                                                                3459


                 [16]  Sun  B,  Sun  J,  Pham  LH,  Shi  J.  Causality-based  neural  network  repair.  In:  Proc.  of  the  44th  Int’l  Conf.  on  Software  Engineering.
                     Pittsburgh: ACM, 2022. 338–349. [doi: 10.1145/3510003.3510080]
                 [17]  Ashok P, Hashemi V, Křetínský J, Mohr S. DeepAbstract: Neural network abstraction for accelerating verification. In: Proc. of the 18th
                     Int’l Symp. Hanoi: Springer, 2020. 92–107. [doi: 10.1007/978-3-030-59152-6_5]
                 [18]  Elboher  YY,  Gottschlich  J,  Katz  G.  An  abstraction-based  framework  for  neural  network  verification.  In:  Lahiri  S  K,  Wang  C,  eds.
                     Computer Aided Verification. Cham: Springer, 2020. 43–65. [doi: 10.1007/978-3-030-53288-8_3]
                 [19]  Ostrovsky M, Barrett C, Katz G. An abstraction-refinement approach to verifying convolutional neural networks. In: Bouajjani A, Holík L,
                     Wu ZL, eds. Automated Technology for Verification and Analysis. Cham: Springer, 2022. 391–396. [doi: 10.1007/978-3-031-19992-9_25]
                 [20]  Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M, Lempitsky V. Domain-adversarial training of
                     neural networks. In: Csurka G, ed. Domain Adaptation in Computer Vision Applications. Cham: Springer, 2017. 189–209. [doi: 10.1007/
                     978-3-319-58347-1_10]
                 [21]  Liu YQ, Ma SQ, Aafer Y, Lee WC, Zhai J, Wang WH, Zhang XY. Trojaning attack on neural networks. In: Proc. of the 25th Annual
                     Network and Distributed System Security Symp. San Diego: The Internet Society, 2018.
                 [22]  Yang PF, Li RJ, Li JL, Huang CC, Wang JY, Sun J, Xue B, Zhang LJ. Improving neural network verification through spurious region
                     guided refinement. In: Groote JF, Larsen KG, eds. Tools and Algorithms for the Construction and Analysis of Systems. Cham: Springer,
                     2021. 389–408. [doi: 10.1007/978-3-030-72016-2_21]
                 [23]  Ugare S, Banerjee D, Misailovic S, Singh G. Incremental verification of neural networks. Proc. of the ACM on Programming Languages,
                     2023, 7(PLDI): 185. [doi: 10.1145/3591299]
                 [24]  Sotoudeh M, Thakur AV. Provable repair of deep neural networks. In: Proc. of the 42nd ACM SIGPLAN Int’l Conf. on Programming
                     Language Design and Implementation. ACM, 2021. 588–603. [doi: 10.1145/3453483.3454064]
                 [25]  Ma JN, Yang PF, Wang JY, Sun YC, Huang CC, Wang Z. VeRe: Verification guided synthesis for repairing deep neural networks. In:
                     Proc. of the 46th IEEE/ACM Int’l Conf. on Software Engineering. Lisbon Portugal: ACM, 2024. 8. [doi: 10.1145/3597503.3623332]
                 [26]  Xu KS, Zhang H, Wang SQ, Wang YH, Jana S, Lin X, Hsieh CJ. Fast and complete: Enabling complete neural network verification with
                     rapid and massively parallel incomplete verifiers. In: Proc. of the 9th Int’l Conf. on Learning Representations. OpenReview.net, 2021.
                 [27]  Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A. Towards deep learning models resistant to adversarial attacks. In: Proc. of the 6th
                     Int’l Conf. on Learning Representations. Vancouver: OpenReview.net, 2018.
                 [28]  Singh G, Gehr T, Mirman M, Püschel M, Vechev M. Fast and effective robustness certification. In: Proc. of the 32nd Int’l Conf. on
                     Neural Information Processing Systems. Montréal: Curran Associates Inc., 2018. 10825–10836.
                 [29]  Pulina L, Tacchella A. An abstraction-refinement approach to verification of artificial neural networks. In: Touili T, Cook B, Jackson P,
                     eds. Computer Aided Verification. Berlin, Heidelberg: Springer, 2010. 243–257. [doi: 10.1007/978-3-642-14295-6_24]
                 [30]  Lomuscio A, Maganti L. An approach to reachability analysis for feed-forward ReLU neural networks. arXiv: 1706.07351, 2017.
                 [31]  Narodytska N, Kasiviswanathan S, Ryzhyk L, Sagiv M, Walsh T. Verifying properties of binarized deep neural networks. In: Proc. of the
                     32nd AAAI Conf. on Artificial Intelligence. New Orleans: AAAI, 2018. 6615–6624. [doi: 10.1609/aaai.v32i1.12206]
                 [32]  Bunel R, Turkaslan I, Torr PHS, Kumar MP, Lu JY, Kohli P. Branch and bound for piecewise linear neural network verification. The
                     Journal of Machine Learning Research, 2020, 21(1): 42.
                 [33]  Lin W, Yang ZF, Chen X, Zhao QY, Li XK, Liu ZM, He JF. Robustness verification of classification deep neural networks via linear
                     programming. In: Proc. of the 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019.
                     11410–11419. [doi: 10.1109/CVPR.2019.01168]
                 [34]  Müller C, Serre F, Singh G, Püschel M, Vechev MT. Scaling polyhedral neural network verification on GPUs. In: Proc. of the 4th Conf.
                     on Machine Learning and Systems. MLSys, 2021.
                 [35]  Singh G, Ganvir R, Püschel M, Vechev M. Beyond the single neuron convex barrier for neural network certification. In: Proc. of the 33rd
                     Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 1352.
                 [36]  Li JL, Liu JC, Yang P, Chen LQ, Huang XW, Zhang LJ. Analyzing deep neural networks with symbolic propagation: Towards higher
                     precision and faster verification. In: Proc. of the 26th Int’l Symp. Porto: Springer, 2019. 296–319. [doi: 10.1007/978-3-030-32304-2_15]
                 [37]  Huang XW, Kwiatkowska M, Wang S, Wu M. Safety verification of deep neural networks. In: Majumdar R, Kunčak V, eds. Computer
                     Aided Verification. Cham: Springer, 2017. 3–29. [doi: 10.1007/978-3-319-63387-9_1]
                 [38]  Ruan WJ, Huang XW, Kwiatkowska M. Reachability analysis of deep neural networks with provable guarantees. In: Proc. of the 27th Int’l
                     Joint Conf. on Artificial Intelligence. Stockholm: AAAI Press, 2018. 2651–2659.
                 [39]  Dutta S, Jha S, Sankaranarayanan S, Tiwari A. Output range analysis for deep feedforward neural networks. In: Dutle A, Muñoz C,
   31   32   33   34   35   36   37   38   39   40   41