Page 383 - 《软件学报》2025年第7期
P. 383

3304                                                       软件学报  2025  年第  36  卷第  7  期


                      Graphics (TOG), 2022, 41(3): 25. [doi: 10.1145/3506694]
                 [173]  Menze M, Geiger A. Object scene flow for autonomous vehicles. In: Proc. of the 2015 IEEE Conf. on Computer Vision and Pattern
                      Recognition. Boston: IEEE, 2015. 3061–3070. [doi: 10.1109/CVPR.2015.7298925]
                 [174]  Graves A, Mohamed AR, Hinton G. Speech recognition with deep recurrent neural networks. arXiv:1303.5778, 2013.
                 [175]  Anderson HS, Roth P. EMBER: An open dataset for training static PE malware machine learning models. arXiv:1804.04637, 2018.
                 [176]  Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K. DREBIN: Effective and explainable detection of android malware in your
                      pocket. In: Proc. of the 21st Annual Network and Distributed System Security Symp. San Diego: Internet Society, 2014. 23–26. [doi: 10.
                      14722/ndss.2014.23247]
                 [177]  Zampieri  M,  Malmasi  S,  Nakov  P,  Rosenthal  S,  Farra  N,  Kumar  R.  SemEval-2019  task  6:  Identifying  and  categorizing  offensive
                      language in social media (OffensEval). In: Proc. of the 13th Int’l Workshop on Semantic Evaluation. Minneapolis: ACL, 2019. 75–86.
                      [doi: 10.18653/v1/S19-2010]
                 [178]  Blitzer J, Dredze M, Pereira F. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In:
                      Proc. of the 45th Annual Meeting of the Association of Computational Linguistics. Prague: ACL, 2007. 440–447.
                 [179]  Movie review data. 2024. https://www.cs.cornell.edu/people/pabo/movie-review-data/
                 [180]  Warstadt A, Singh A, Bowman SR. Neural network acceptability judgments. Trans. of the Association for Computational Linguistics,
                      2019, 7: 625–641. [doi: 10.1162/tacl_a_00290]
                 [181]  Sakkis G, Androutsopoulos I, Paliouras G, Karkaletsis V, Spyropoulos CD, Stamatopoulos P. A memory-based approach to anti-spam
                      filtering for mailing lists. Information Retrieval, 2003, 6(1): 49–73. [doi: 10.1023/A:1022948414856]
                 [182]  Metsis V, Androutsopoulos I, Paliouras G. Spam filtering with naive Bayes—which naive Bayes? In: Proc. of the 3rd Conf. on Email
                      and Anti-spam. Mountain View, 2006. http://nlp.cs.aueb.gr/pubs/ceas2006_paper.pdf
                 [183]  Zampieri M, Malmasi S, Nakov P, Rosenthal S, Farra N, Kumar R. Predicting the type and target of offensive posts in social media. In:
                      Proc.  of  the  2019  Conf.  of  the  North  American  Chapter  of  the  Association  for  Computational  Linguistics:  Human  Language
                      Technologies, Vol. 1 (Long Papers). Minneapolis: ACL, 2019. 1415–1420. [doi: 10.18653/v1/N19-1144]
                 [184]  Toxic comment classification challenge. 2024. https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/
                 [185]  Founta  A,  Djouvas  C,  Chatzakou  D,  Leontiadis  I,  Blackburn  J,  Stringhini  G,  Vakali  A,  Sirivianos  M,  Kourtellis  N.  Large  scale
                      crowdsourcing and characterization of twitter abusive behavior. In: Proc. of the 12th Int’l AAAI Conf. on Web and Social Media. Palo
                      Alto: AAAI, 2018. 491–500. [doi: 10.1609/icwsm.v12i1.14991]
                 [186]  Li X, Roth D. Learning question classifiers. In: Proc. of the 19th Int’l Conf. on Computational Linguistics. Taipei: ACL, 2002. https://
                      aclanthology.org/C02-1150
                 [187]  Zhang X, Zhao JB, LeCun Y. Character-level convolutional networks for text classification. In: Proc. of the 29th Int’l Conf. on Neural
                      Information Processing Systems. Montreal: MIT Press, 2015. 649–657.
                 [188]  Patwa P, Sharma S, Pykl S, Guptha V, Kumari G, Akhtar MS, Ekbal A, Das A, Chakraborty T. Fighting an infodemic: Covid-19 fake
                      news  dataset.  In:  Proc.  of  the  1st  Int’l  Workshop  on  Combating  Online  Hostile  Posts  in  Regional  Languages  during  Emergency
                      Situation. Springer, 2021. 21–29. [doi: 10.1007/978-3-030-73696-5_3]
                 [189]  Microsoft Research paraphrase corpus. 2024. https://www.microsoft.com/en-us/download/details.aspx?id=52398
                 [190]  Bowman SR, Angeli G, Potts C, Manning CD. A large annotated corpus for learning natural language inference. In: Proc. of the 2015
                      Conf. on Empirical Methods in Natural Language Processing. Lisbon: ACL, 2015. 632–642. [doi: 10.18653/v1/D15-1075]
                 [191]  Williams A, Nangia N, Bowman S. A broad-coverage challenge corpus for sentence understanding through inference. In: Proc. of the
                      2018 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1
                      (Long Papers). New Orleans: ACL, 2018. 1112–1122. [doi: 10.18653/v1/N18-1101]
                 [192]  Giampiccolo D, Magnini B, Dagan I, Dolan B. The third pascal recognizing textual entailment challenge. In: Proc. of the ACL-PASCAL
                      Workshop on Textual Entailment and Paraphrasing. Prague: ACL, 2007. 1–9.
                 [193]  WMT14. 2024. https://www.statmt.org/wmt14/translation-task.html
                 [194]  Clark C, Lee K, Chang MW, Kwiatkowski T, Collins M, Toutanova K. BoolQ: Exploring the surprising difficulty of natural yes/no
                      questions. arXiv:1905.10044, 2019.
                 [195]  Sang EFTK, De Meulder F. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In: Proc. of
                      the 7th Conf. on Natural Language Learning at HLT-NAACL 2003. Stroudsburg: ACL, 2003. 142–147.
                 [196]  Baevski A, Zhou H, Mohamed A, Auli M. wav2vec 2.0: A framework for self-supervised learning of speech representations. In: Proc. of
                      the 34th Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020. 12449–12460.
                 [197]  TIMIT. 2024. https://academictorrents.com/details/34e2b78745138186976cbc27939b1b34d18bd5b3
   378   379   380   381   382   383   384   385   386   387   388