Page 383 - 《软件学报》2025年第7期
P. 383
3304 软件学报 2025 年第 36 卷第 7 期
Graphics (TOG), 2022, 41(3): 25. [doi: 10.1145/3506694]
[173] Menze M, Geiger A. Object scene flow for autonomous vehicles. In: Proc. of the 2015 IEEE Conf. on Computer Vision and Pattern
Recognition. Boston: IEEE, 2015. 3061–3070. [doi: 10.1109/CVPR.2015.7298925]
[174] Graves A, Mohamed AR, Hinton G. Speech recognition with deep recurrent neural networks. arXiv:1303.5778, 2013.
[175] Anderson HS, Roth P. EMBER: An open dataset for training static PE malware machine learning models. arXiv:1804.04637, 2018.
[176] Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K. DREBIN: Effective and explainable detection of android malware in your
pocket. In: Proc. of the 21st Annual Network and Distributed System Security Symp. San Diego: Internet Society, 2014. 23–26. [doi: 10.
14722/ndss.2014.23247]
[177] Zampieri M, Malmasi S, Nakov P, Rosenthal S, Farra N, Kumar R. SemEval-2019 task 6: Identifying and categorizing offensive
language in social media (OffensEval). In: Proc. of the 13th Int’l Workshop on Semantic Evaluation. Minneapolis: ACL, 2019. 75–86.
[doi: 10.18653/v1/S19-2010]
[178] Blitzer J, Dredze M, Pereira F. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In:
Proc. of the 45th Annual Meeting of the Association of Computational Linguistics. Prague: ACL, 2007. 440–447.
[179] Movie review data. 2024. https://www.cs.cornell.edu/people/pabo/movie-review-data/
[180] Warstadt A, Singh A, Bowman SR. Neural network acceptability judgments. Trans. of the Association for Computational Linguistics,
2019, 7: 625–641. [doi: 10.1162/tacl_a_00290]
[181] Sakkis G, Androutsopoulos I, Paliouras G, Karkaletsis V, Spyropoulos CD, Stamatopoulos P. A memory-based approach to anti-spam
filtering for mailing lists. Information Retrieval, 2003, 6(1): 49–73. [doi: 10.1023/A:1022948414856]
[182] Metsis V, Androutsopoulos I, Paliouras G. Spam filtering with naive Bayes—which naive Bayes? In: Proc. of the 3rd Conf. on Email
and Anti-spam. Mountain View, 2006. http://nlp.cs.aueb.gr/pubs/ceas2006_paper.pdf
[183] Zampieri M, Malmasi S, Nakov P, Rosenthal S, Farra N, Kumar R. Predicting the type and target of offensive posts in social media. In:
Proc. of the 2019 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Vol. 1 (Long Papers). Minneapolis: ACL, 2019. 1415–1420. [doi: 10.18653/v1/N19-1144]
[184] Toxic comment classification challenge. 2024. https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/
[185] Founta A, Djouvas C, Chatzakou D, Leontiadis I, Blackburn J, Stringhini G, Vakali A, Sirivianos M, Kourtellis N. Large scale
crowdsourcing and characterization of twitter abusive behavior. In: Proc. of the 12th Int’l AAAI Conf. on Web and Social Media. Palo
Alto: AAAI, 2018. 491–500. [doi: 10.1609/icwsm.v12i1.14991]
[186] Li X, Roth D. Learning question classifiers. In: Proc. of the 19th Int’l Conf. on Computational Linguistics. Taipei: ACL, 2002. https://
aclanthology.org/C02-1150
[187] Zhang X, Zhao JB, LeCun Y. Character-level convolutional networks for text classification. In: Proc. of the 29th Int’l Conf. on Neural
Information Processing Systems. Montreal: MIT Press, 2015. 649–657.
[188] Patwa P, Sharma S, Pykl S, Guptha V, Kumari G, Akhtar MS, Ekbal A, Das A, Chakraborty T. Fighting an infodemic: Covid-19 fake
news dataset. In: Proc. of the 1st Int’l Workshop on Combating Online Hostile Posts in Regional Languages during Emergency
Situation. Springer, 2021. 21–29. [doi: 10.1007/978-3-030-73696-5_3]
[189] Microsoft Research paraphrase corpus. 2024. https://www.microsoft.com/en-us/download/details.aspx?id=52398
[190] Bowman SR, Angeli G, Potts C, Manning CD. A large annotated corpus for learning natural language inference. In: Proc. of the 2015
Conf. on Empirical Methods in Natural Language Processing. Lisbon: ACL, 2015. 632–642. [doi: 10.18653/v1/D15-1075]
[191] Williams A, Nangia N, Bowman S. A broad-coverage challenge corpus for sentence understanding through inference. In: Proc. of the
2018 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1
(Long Papers). New Orleans: ACL, 2018. 1112–1122. [doi: 10.18653/v1/N18-1101]
[192] Giampiccolo D, Magnini B, Dagan I, Dolan B. The third pascal recognizing textual entailment challenge. In: Proc. of the ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing. Prague: ACL, 2007. 1–9.
[193] WMT14. 2024. https://www.statmt.org/wmt14/translation-task.html
[194] Clark C, Lee K, Chang MW, Kwiatkowski T, Collins M, Toutanova K. BoolQ: Exploring the surprising difficulty of natural yes/no
questions. arXiv:1905.10044, 2019.
[195] Sang EFTK, De Meulder F. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In: Proc. of
the 7th Conf. on Natural Language Learning at HLT-NAACL 2003. Stroudsburg: ACL, 2003. 142–147.
[196] Baevski A, Zhou H, Mohamed A, Auli M. wav2vec 2.0: A framework for self-supervised learning of speech representations. In: Proc. of
the 34th Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020. 12449–12460.
[197] TIMIT. 2024. https://academictorrents.com/details/34e2b78745138186976cbc27939b1b34d18bd5b3

