Page 381 - 《软件学报》2025年第7期
P. 381
3302 软件学报 2025 年第 36 卷第 7 期
effective NLP backdoor defense. In: Proc. of the 39th Int’l Conf. on Machine Learning. Baltimore: ICML, 2022. 19879–19892.
[127] Xu XJ, Wang Q, Li HC, Borisov N, Gunter CA, Li B. Detecting AI Trojans using meta neural analysis. In: Proc. of the 2021 IEEE
Symp. on Security and Privacy. San Francisco: IEEE, 2021. 103–120. [doi: 10.1109/SP40001.2021.00034]
[128] Kolouri S, Saha A, Pirsiavash H, Hoffmann H. Universal litmus patterns: Revealing backdoor attacks in CNNs. In: Proc. of the 2020
IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 298–307. [doi: 10.1109/CVPR42600.2020.00038]
[129] Wang JL, Zhang ZY, Wang MQ, Qiu H, Zhang TW, Li Q, Li ZP, Wei T, Zhang C. Aegis: Mitigating targeted bit-flip attacks against
deep neural networks. In: Proc. of the 32nd USENIX Security Symp. Anaheim: USENIX Association, 2023. 2329–2346.
[130] Xiang C, Bhagoji AN, Sehwag V, Mittal P. PatchGuard: A provably robust defense against adversarial patches via small receptive fields
and masking. In: Proc. of the 30th USENIX Security Symp. USENIX Association, 2021. 2237–2254.
[131] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc. of the IEEE, 1998, 86(11):
2278–2324. [doi: 10.1109/5.726791]
[132] Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images. Technical Report, TR-2009, Toronto: University of
Toronto, 2009.
[133] Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. In: Proc. of the 2009 IEEE
Conf. on Computer Vision and Pattern Recognition. Miami: IEEE, 2009. 248–255. [doi: 10.1109/CVPR.2009.5206848]
[134] Stallkamp J, Schlipsing M, Salmen J, Igel C. The german traffic sign recognition benchmark: A multi-class classification competition.
In: Proc. of the 2011 Int’l Joint Conf. on Neural Networks. San Jose: IEEE, 2011. 1453–1460. [doi: 10.1109/IJCNN.2011.6033395]
[135] Cao Q, Shen L, Xie WD, Parkhi OM, Zisserman A. VGGFace2: A dataset for recognising faces across pose and age. In: Proc. of the
13th IEEE Int’l Conf. on Automatic Face & Gesture Recognition (FG). Xi’an: IEEE, 2018. 67–74. [doi: 10.1109/FG.2018.00020]
[136] Kumar N, Berg AC, Belhumeur PN, Nayar SK. Attribute and simile classifiers for face verification. In: Proc. of the 12th IEEE Int’l
Conf. on Computer Vision. Kyoto: IEEE, 2009. 365–372. [doi: 10.1109/ICCV.2009.5459250]
[137] Liu ZW, Luo P, Wang XG, Tang XO. Deep learning face attributes in the wild. In: Proc. of the 2015 IEEE Int’l Conf. on Computer
Vision (ICCV). Santiago: IEEE, 2015. 3730–3738. [doi: 10.1109/ICCV.2015.425]
[138] Maas AL, Daly RE, Pham PT, Huang D, Ng AY, Potts C. Learning word vectors for sentiment analysis. In: Proc. of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies. Potland: ACL, 2011. 142–150.
[139] Socher R, Perelygin A, Wu J, Chuang J, Manning CD, Ng A, Potts C. Recursive deep models for semantic compositionality over a
sentiment treebank. In: Proc. of the 2013 Conf. on Empirical Methods in Natural Language Processing (EMNLP). Seattle: ACL, 2013.
1631–1642.
[140] Yelp dataset. 2024. https://www.yelp.com/dataset
[141] Rajpurkar P, Zhang J, Lopyrev K, Liang P. SQuAD: 100,000+ Questions for machine comprehension of text. In: Proc. of the 2016 Conf.
on Empirical Methods in Natural Language Process. Austin: ACL, 2016. 2383–2392. [doi: 10.18653/v1/D16-1264]
[142] Xiao H, Rasul K, Vollgraf R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms.
arXiv:1708.07747, 2017.
[143] Parkhi OM, Vedaldi A, Zisserman A, Jawahar CV. Cats and dogs. In: Proc. of the 2012 IEEE Conf. on Computer Vision and Pattern
Recognition. Providence: IEEE, 2012. 3498–3505. [doi: 10.1109/CVPR.2012.6248092]
[144] Nilsback ME, Zisserman A. Automated flower classification over a large number of classes. In: Proc. of the 6th Indian Conf. on
Computer Vision, Graphics & Image Processing. Bhubaneswar: IEEE, 2008. 722–729. [doi: 10.1109/ICVGIP.2008.47]
[145] Fei-Fei L, Fergus R, Perona P. Learning generative visual models from few training examples: An incremental Bayesian approach tested
on 101 object categories. In: Proc. of the 2004 IEEE Conf. on Computer Vision and Pattern Recognition Workshop. Washington: IEEE,
2004. 178. [doi: 10.1109/CVPR.2004.383]
[146] Griffin G, Holub A, Perona P. Caltech-256 object category dataset (public). Technical Report, CNS-TR-2007-001, California Institute of
Technology, 2007. https://authors.library.caltech.edu/records/5sv1j-ytw97
[147] Coates A, Ng AY, Lee H. An analysis of single-layer networks in unsupervised feature learning. In: Proc. of the 14th Int’l Conf. on
Artificial Intelligence and Statistics. 2011. 215–223.
[148] Møgelmose A, Liu DR, Trivedi MM. Traffic sign detection for U.S. roads: Remaining challenges and a case for tracking. In: Proc. of the
17th Int’l IEEE Conf. on Intelligent Transportation Systems (ITSC). Qingdao: IEEE, 2014. 1394–1399. [doi: 10.1109/ITSC.2014.
6957882]
[149] Huang L. Chinese traffic sign database. 2024. http://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html
[150] Timofte R, Zimmermann K, van Gool L. Multi-view traffic sign detection, recognition, and 3D localisation. Machine Vision and
Applications, 2014, 25(3): 633–647. [doi: 10.1007/s00138-011-0391-3]
[151] Sengupta S, Chen JC, Castillo C, Patel VM, Chellappa R, Jacobs DW. Frontal to profile face verification in the wild. In: Proc. of the

