Page 378 - 《软件学报》2025年第7期
P. 378
高梦楠 等: 面向深度学习的后门攻击及防御研究综述 3299
[57] Cheng SY, Liu YQ, Ma SQ, Zhang XY. Deep feature space Trojan attack of neural networks by controlled detoxification. In: Proc. of
the 35th AAAI Conf. on Artificial Intelligence. Virtually: AAAI Press, 2021. 1148–1156. [doi: 10.1609/aaai.v35i2.16201]
[58] Hammoud HAAK, Ghanem B. Check your other door! Creating backdoor attacks in the frequency domain. In: Proc. of the 33rd British
Machine Vision Conf. London: BMVA Press, 2022. 259.
[59] Liu XR, Tan YA, Wang YJ, Qiu KF, Li YZ. Stealthy low-frequency backdoor attack against deep neural networks. arXiv:2305.09677,
2023.
[60] Yue C, Lv PZ, Liang RG, Chen K. Invisible backdoor attacks using data poisoning in frequency domain. In: Proc. of the 26th European
Conf. on Artificial Intelligence. Kraków: IOS Press, 2023. 2954–2961. [doi: 10.3233/FAIA230610]
[61] Li XK, Chen ZR, Zhao Y, Tong ZK, Zhao YB, Lim A, Zhou JT. PointBA: Towards backdoor attacks in 3D point cloud. In: Proc. of the
2021 IEEE Int’l Conf. on Computer Vision (ICCV). Montreal: IEEE, 2021. 16472–16481. [doi: 10.1109/ICCV48922.2021.01618]
[62] Fan LK, He FZ, Si TZ, Fan RB, Ye CL, Li B. MBA: Backdoor attacks against 3D mesh classifier. IEEE Trans. on Information Forensics
and Security, 2024, 19: 2127–2142. [doi: 10.1109/TIFS.2023.3346644]
[63] Sasaki S, Hidano S, Uchibayashi T, Suganuma T, Hiji M, Kiyomoto S. On embedding backdoor in malware detectors using machine
learning. In: Proc. of the 17th Int’l Conf. on Privacy, Security and Trust. Fredericton: IEEE, 2019. 1–5. [doi: 10.1109/PST47121.2019.
8949034]
[64] Li CR, Chen X, Wang DR, Wen S, Ahmed ME, Camtepe S, Xiang Y. Backdoor attack on machine learning based android malware
detectors. IEEE Trans. on Dependable and Secure Computing, 2022, 19(5): 3357–3370. [doi: 10.1109/TDSC.2021.3094824]
[65] Tian JW, Qiu KF, Gao DB, Wang Z, Kuang XH, Zhao G. Sparsity brings vulnerabilities: Exploring new metrics in backdoor attacks. In:
Proc. of the 32nd USENIX Security Symp. Anaheim: USENIX Association, 2023. 2689–2706.
[66] Salem A, Wen R, Backes M, Ma SQ, Zhang Y. Dynamic backdoor attacks against machine learning models. In: Proc. of the 7th IEEE
European Symp. on Security and Privacy (EuroS&P). Genoa: IEEE, 2022. 703–718. [doi: 10.1109/EuroSP53844.2022.00049]
[67] Nguyen TA, Tran TA. Input-aware dynamic backdoor attack. In: Proc. of the 34th Int’l Conf. on Neural Information Processing
Systems. Vancouver: Curran Associates Inc., 2020. 3454–3464.
[68] Doan K, Lao YJ, Zhao WJ, Li P. LIRA: Learnable, imperceptible and robust backdoor attacks. In: Proc. of the 2021 IEEE/CVF Int’l
Conf. on Computer Vision (ICCV). Montreal: IEEE, 2021. 11946–11956. [doi: 10.1109/ICCV48922.2021.01175]
[69] Gong XL, Chen YJ, Wang Q, Huang HY, Meng LS, Shen C, Zhang Q. Defense-resistant backdoor attacks against deep neural networks
in outsourced cloud environment. IEEE Journal on Selected Areas in Communications, 2021, 39(8): 2617–2631. [doi: 10.1109/JSAC.
2021.3087237]
[70] Xue MF, Ni SF, Wu YH, Zhang YS, Liu WQ. Imperceptible and multi-channel backdoor attack. Applied Intelligence, 2024, 54(1):
1099–1116. [doi: 10.1007/s10489-023-05228-6]
[71] Chow KH, Wei WQ, Yu L. Imperio: Language-guided backdoor attacks for arbitrary model control. In: Proc. of the 33rd Int’l Joint
Conf. on Artificial Intelligence. 2024. 704–712. [doi: 10.24963/ijcai.2024/78]
[72] Liu YQ, Ma SQ, Aafer Y, Lee WC, Zhai J, Wang WH, Zhang XY. Trojaning attack on neural networks. In: Proc. of the 25th Annual
Network and Distributed System Security Symp. San Diego: Internet Society, 2018. [doi: 10.14722/ndss.2018.23291]
[73] Lv PZ, Ma HL, Zhou JC, Liang RG, Chen K, Zhang SZ, Yang YF. DBIA: Data-free backdoor injection attack against transformer
networks. arXiv:2111.11870, 2021.
[74] Lv PZ, Yue C, Liang RG, Yang YF, Zhang SZ, Ma HL, Chen K. A data-free backdoor injection approach in neural networks. In: Proc.
of the 32nd USENIX Security Symp. Anaheim: USENIX Association, 2023. 2671–2688.
[75] Yu Y, Wang YF, Yang WH, Lu SJ, Tan YP, Kot AC. Backdoor attacks against deep image compression via adaptive frequency trigger.
In: Proc. of the 2023 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023. 12250–12259. [doi: 10.
1109/CVPR52729.2023.01179]
[76] Yang WK, Li L, Zhang ZY, Ren XC, Sun X, He B. Be careful about poisoned word embeddings: Exploring the vulnerability of the
embedding layers in NLP models. In: Proc. of the 2021 Conf. of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. ACL, 2021. 2048–2058. [doi: 10.18653/v1/2021.naacl-main.165]
[77] Li LY, Song DM, Li XN, Zeng JH, Ma RT, Qiu XP. Backdoor attacks on pre-trained models by layerwise weight poisoning. In: Proc. of
the 2021 Conf. on Empirical Methods in Natural Language Processing. ACL, 2021. 3023–3032. [doi: 10.18653/v1/2021.emnlp-main.
241]
[78] Tang RX, Du MN, Liu NH, Yang F, Hu X. An embarrassingly simple approach for Trojan attack in deep neural networks. In: Proc. of
the 26th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. ACM, 2020. 218–228. [doi: 10.1145/3394486.3403064]
[79] Hong S, Carlini N, Kurakin A. Handcrafted backdoors in deep neural networks. In: Proc. of the 36th Conf. on Neural Information
Processing Systems. New Orleans: Curran Associates Inc., 2022. 8068–8080.

