Page 319 - 《软件学报》2025年第7期
P. 319

3240                                                       软件学报  2025  年第  36  卷第  7  期


                 和主题, 可能涉及多个标签, 而传统的单标签文本分类方法只能为每个文本分配一个最相关的标签. 因此, 在处理
                 涉及多主题的文本数据时, 多标签文本分类是一种更有效的方法.
                    多标签文本分类任务是为每个文本分配多个标签, 与传统的单标签文本分类任务不同, 多标签文本分类面临
                 着更大的挑战和复杂性, 如标签依赖           [6] 、标签不平衡  [7] 、标签噪声  [8] 等. 早期的研究方法将多标签分类问题转化为
                 多个独立的单标签分类问题, 针对每个标签独立训练一个分类器来预测该标签, 然后将所有分类器的输出组合成
                 最终的多标签预测结果        [9] . 这类方法简单易实现, 但忽略了标签之间的关系. 随着深度学习的不断发展, 基于深度
                 神经网络的方法被陆续提出, 这类方法主要通过提取增强文本表示和建模标签关系来改善分类效果. 在提取增强
                 文本表示上, 深度学习模型通过学习文本的语义表示和上下文信息, 能够更好地捕捉文本中的关键信息, 从而提高
                 分类的性能    [10,11] . 在建模标签关系上, 利用标签的先验知识       (如共现等) 构造标签图, 采用不同的方法在图上学习标
                 签表示, 通过捕获标签之间的依赖关系提升分类性能                 [12,13] . 在这些方法当中, 标签图通常基于数据集统计信息构
                 建, 也即是静态图. 然而, 从训练集获取到的标签共现数据依赖全局数据分布, 不能代替文档内容特有的标签关系.
                 在实际情况中, 不同文本依赖不同的标签关系, 需要一种动态的方式描述标签关联.
                    图  1 展示了动态建图与静态建图的差异. 为文本中的词汇标注标签, 并根据标签共现关系动态调整标签关系图.

                                                                                             cs.MA
                      cs.AI cs.RO                        cs.CV  cs.AI
                                                                                    cs.CV
                     intelligent  machines require  basic  information  such  as  moving  object  detection from
                                                                                          cs.AI
                     videos  in order to  deduce  higher  level  semantic  information .  in  this  paper ,  we
                                                          cs.CV  cs.AI
                     propose a  methodology that  uses  a  texture  measure  to  detect  moving  objects in  vi
                     deo  the  methodology  is  computationally  inexpensive  ,  requires  minimal  parameter  fi  静态图
                     -ne  tuning  and also  is  resilient  to  noise  ,  illumination  changes  , dynamic  backgroun  cs.RO  cs.SY
                     d and  low  frame  rate  experimental  results  show  that  performance  of  the  proposed
                                                                                             cs.MA
                     approach  is  higher  than  those of  state  of  the  art  approaches  we present  framework
                           cs.AI cs.SY  cs.MA      cs.CV  cs.AI                     cs.CV
                     for  vehicular  traffic  density  estimation using  foreground  object  detection technique
                                                                                          cs.AI
                                                                           动态图
                                               cs.CV cs.AI
                     and  present  comparison  between  the  foreground  object  detection based  framework
                                cs.AI cs.SY  cs.MA          cs.AI  cs.SY  cs.MA
                     and  the  classical  density  state modelling based  framework  for  vehicular  traffic  densi
                     ty  estimation                                                cs.RO         cs.SY
                                            (a) 动态图样例 1: 捕捉静态图中不存在的标签关联
                                                                                             cs.MA
                      cs.CV  cs.AI
                                                                                   cs.CV
                     texture classification became one of the problems which has been paid much attention on
                       cs.CV  cs.AI                                                      cs.AI
                     by  image  processing scientists  since  late  80s  consequently  , since  now  many  different
                     methods  have  been  proposed  to  solve  this  problem  in  most  of  these  methods  the
                     researchers attempted to describe and discriminate textures based on linear and non linear   静态图
                     patterns the linear and  non linear patterns on any window are based on formation of
                      cs.CV  cs.AI                                                cs.RO          cs.SY
                     grain components in a particular order grain component is a primitive unit of morphology
                     that most meaningful information often appears in the form of occurrence of that the   cs.MA
                     approach which  is proposed in this paper could analyze the  texture  based  on  its
                                                                                   cs.CV
                       cs.CV  cs.AI           cs.CV  cs.AI
                     grain  components and  then  by  making  grain  components histogram  and  extracting   动态图  cs.AI
                     statistical features from that would classify the textures finally , to increase the accuracy of
                     classification  , proposed approach  is  expanded to  color  images to  utilize the ability of
                     approach in analyzing each rgb channels , individually although , this approach is a general
                     one and it could be used in different applications , the method has been tested on the
                     stone texture and the results can prove the quality of approach  cs.RO     cs.SY
                                          (b) 动态图样例 2: 削弱标签关系图中文本无关标签的关联
                                                     图 1 动态图的生成

                    图  1(a) 中描述的文档中包含     detect moving objects、moving object detection、vehicular traffic density estimation、
                 foreground object detection  等关键词, 这些关键词不仅与人工智能    (cs.AI) 和计算机视觉   (cs.CV) 相关, 也与系统控
   314   315   316   317   318   319   320   321   322   323   324