Page 261 - 《软件学报》2025年第7期
P. 261

3182                                                       软件学报  2025  年第  36  卷第  7  期


                 [70]  Yu  HF,  Gibbons  PB,  Kaminsky  M,  Xiao  F.  SybilLimit:  A  near-optimal  social  network  defense  against  sybil  attacks.  In:  Proc.  of
                      the 2008 IEEE Symp. on Security and Privacy (SP 2008). Oakland: IEEE, 2008. 3–17. [doi: 10.1109/SP.2008.13]
                 [71]  Eyal I, Sirer EG. Majority is not enough: Bitcoin mining is vulnerable. Communications of the ACM, 2018, 61(7): 95–102. [doi: 10.
                      1145/3212998]
                 [72]  Zheng J, Huang HW, Zheng ZB, Guo S. Adaptive double-spending attacks on pow-based blockchains. IEEE Trans. on Dependable and
                      Secure Computing, 2024, 21(3): 1098–1110. [doi: 10.1109/TDSC.2023.3268668]
                 [73]  Couto da Silva FJ, Damsgaard SB, Mousing Sorensen MA, Marty F, Altariqi B, Chatzigianni E, Madsen TK, Schwefel HP. Analysis of
                      blockchain  forking  on  an  Ethereum  network.  In:  Proc.  of  the  25th  European  Wireless  Conf.  Aarhus:  Verband  Deutscher
                      Elektrotechniker, 2019. 1–6.
                 [74]  Gervais A, Ritzdorf H, Karame GO, Capkun S. Tampering with the delivery of blocks and transactions in Bitcoin. In: Proc. of the 22nd
                      ACM SIGSAC Conf. on Computer and Communications Security. Denver: ACM, 2015. 692–705. [doi: 10.1145/2810103.2813655]
                 [75]  Kistowski JV, Arnold JA, Huppler K, Lange KD, Henning JL, Cao P. How to build a benchmark. In: Proc. of the 6th ACM/SPEC Int’l
                      Conf. on Performance Engineering. Austin: ACM, 2015. 333–336. [doi: 10.1145/2668930.2688819]
                 [76]  Huppler  K.  The  art  of  building  a  good  benchmark.  In:  Performance  Evaluation  and  Benchmarking.  Lyon:  Springer,  2009.  18–30.
                      [doi: 10.1007/978-3-642-10424-4_3]
                 [77]  Gray J. Database and transaction processing performance handbook. In: Gray J, ed. The Benchmark Handbook. San Mateo: Morgan
                      Kaufmann, 1993.
                 [78]  Bitton D, DeWitt DJ, Turbyfil C. Benchmarking database systems: A systematic approach. Technical Report, #526, Madison: Computer
                      Sciences Department, University of Wisconsin—Madison, 1983.
                 [79]  DeWitt  DJ.  The  Wisconsin  benchmark:  Past,  present,  and  future.  In:  Gray  J,  ed.  The  Benchmark  Handbook.  San  Mateo:  Morgan
                      Kaufmann, 1993.
                                           3
                 [80]  Turbyfill C, Orji C, Bitton D. As AP—An ANSI SQL standard scalable and portable benchmark for relational database systems. In:
                      Benchmark Handbook for Database and Transaction System. 2nd ed., 1993.
                 [81]  Difallah DE, Pavlo A, Curino C, Cudre-Mauroux P. OLTP-bench: An extensible testbed for benchmarking relational databases. Proc. of
                      the VLDB Endowment, 2013, 7(4): 277–288. [doi: 10.14778/2732240.2732246]
                 [82]  O’Neil PE. The Set Query Benchmark. In: Benchmark Handbook for Database and Transaction System. 2nd ed., 1993.
                 [83]  Nambiar RO, Poess M. The making of TPC-DS. In: Proc. of the 32nd Int’l Conf. on Very Large Data Bases. Seoul: VLDB Endowment,
                      2006. 1049–1058.
                 [84]  O’Neil P, O’Neil B, Chen XD. The Star schema benchmark. 2009. http://www.cs.umb.edu/~poneil/StarSchemaB.PDF
                 [85]  Cole R, Funke F, Giakoumakis L, Guy W, Kemper A, Krompass S, Kuno H, Nambiar R, Neumann T, Poess M, Sattler KU, Seibold M,
                      Simon E, Waas F. The mixed workload CH-benCHmark. In: Proc. of the 4th Int’l Workshop on Testing Database Systems. Athens:
                      ACM, 2011. 8. [doi: 10.1145/1988842.1988850]
                 [86]  Milkai E, Chronis Y, Gaffney KP, Guo ZH, Patel JM, Yu XY. How good is my HTAP system? In: Proc. of the 2022 Int’l Conf. on
                      Management of Data. Philadelphia: ACM, 2022. 1810–1824. [doi: 10.1145/3514221.3526148]
                 [87]  Qian  K,  Liu  YQ,  Shu  CR,  Sun  YF,  Wang  K.  Fine-grained  benchmarking  and  targeted  optimization:  Enabling  green  IoT-oriented
                      blockchain in the 6G era. IEEE Trans. on Green Communications and Networking, 2023, 7(2): 1036–1051. [doi: 10.1109/TGCN.2022.
                      3185610]
                 [88]  Ren  K,  Van  Buskirk  JFB,  Ang  ZY,  Hou  SZ,  Cable  NR,  Monares  M,  Korth  HF,  Loghin  D.  BBSF:  Blockchain  benchmarking
                      standardized framework. In: Proc. of the 1st Workshop on Verifiable Database Systems. Seattle: ACM, 2023. 10–18. [doi: 10.1145/
                      3595647.3595649]
                 [89]  Shalaby S, Abdellatif AA, Al-Ali A, Mohamed A, Erbad A, Guizani M. Performance evaluation of Hyperledger Fabric. In: Proc. of
                      the 2020  IEEE  Int’l  Conf.  on  Informatics,  IoT,  and  Enabling  Technologies  (ICIoT).  Doha:  IEEE,  2020.  608–613.  [doi: 10.1109/
                      ICIoT48696.2020.9089614]
                 [90]  Baliga A, Subhod I, Kamat P, Chatterjee S. Performance evaluation of the Quorum blockchain platform. arXiv:1809.03421, 2018.
                 [91]  Hao Y, Li Y, Dong XH, Fang L, Chen P. Performance analysis of consensus algorithm in private blockchain. In: Proc. of the 2018 IEEE
                      Intelligent Vehicles Symp. (IV). Changshu: IEEE, 2018. 280–285. [doi: 10.1109/IVS.2018.8500557]
                 [92]  Nasir  Q,  Qasse  IA,  Talib  MA,  Nassif  AB.  Performance  analysis  of  Hyperledger  Fabric  platforms.  Security  and  Communication
                      Networks, 2018, 2018: 3976093. [doi: 10.1155/2018/3976093]
                 [93]  Pongnumkul S, Siripanpornchana C, Thajchayapong S. Performance analysis of private blockchain platforms in varying workloads. In:
                      Proc. of the 26th Int’l Conf. on Computer Communication and Networks (ICCCN). Vancouver: IEEE, 2017. 1–6. [doi: 10.1109/ICCCN.
   256   257   258   259   260   261   262   263   264   265   266