Page 259 - 《软件学报》2025年第7期
P. 259

3180                                                       软件学报  2025  年第  36  卷第  7  期


                      Dhabi: ACM, 2017. 3–7. [doi: 10.1145/3055518.3055526]
                 [22]  Croman K, Decker C, Eyal I, Gencer AE, Juels A, Kosba A, Miller A, Saxena P, Shi E, Sirer EG, Song D, Wattenhofer R. On scaling
                      decentralized blockchains (A position paper). In: Proc. of the 2016 Int’l Conf. on Financial Cryptography and Data Security. Barbados:
                      Springer, 2016. 106–125. [doi: 10.1007/978-3-662-53357-4_8]
                 [23]  Scalability of Bitcoin. 2023. https://en.bitcoin.it/wiki/Scalability
                 [24]  Kalodner  H,  Goldfeder  S,  Chen  XQ,  Weinberg  SM,  Felten  EW.  Arbitrum:  Scalable,  private  smart  contracts.  In:  Proc.  of  the  27th
                      USENIX Security Symp. Baltimore: USENIX Association, 2018. 1353–1370.
                 [25]  Gaži P, Kiayias A, Zindros D. Proof-of-stake sidechains. In: Proc. of the 2019 IEEE Symp. on Security and Privacy (SP). San Francisco:
                      IEEE, 2019. 139–156. [doi: 10.1109/SP.2019.00040]
                 [26]  Li F, Li ZR, Zhao H. Research on the progress in cross-chain technology of blockchains. Ruan Jian Xue Bao/Journal of Software, 2019,
                      30(6): 1649–1660 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5741.htm [doi: 10.13328/j.cnki.jos.005741]
                 [27]  Dickerson  T,  Gazzillo  P,  Herlihy  M,  Koskinen  E.  Adding  concurrency  to  smart  contracts.  In:  Proc.  of  the  2017  ACM  Symp.  on
                      Principles of Distributed Computing. Washington: ACM, 2017. 303–312. [doi: 10.1145/3087801.3087835]
                 [28]  Hashim F, Shuaib K, Zaki N. Sharding for scalable blockchain networks. SN Computer Science, 2022, 4(1): 2. [doi: 10.1007/s42979-
                      022-01435-z]
                 [29]  Luu L, Narayanan V, Zheng CD, Baweja K, Gilbert S, Saxena P. A secure sharding protocol for open blockchains. In: Proc. of the 2016
                      ACM SIGSAC Conf. on Computer and Communications Security. Vienna: ACM, 2016. 17–30. [doi: 10.1145/2976749.2978389]
                 [30]  Silvano  WF,  Marcelino  R.  Iota  Tangle:  A  cryptocurrency  to  communicate  Internet-of-Things  data.  Future  Generation  Computer
                      Systems, 2020, 112: 307–319. [doi: 10.1016/j.future.2020.05.047]
                 [31]  Lewenberg Y, Sompolinsky Y, Zohar A. Inclusive block chain protocols. In: Proc. of the 19th Int’l Conf. on Financial Cryptography and
                      Data Security. San Juan: Springer, 2015. 528–547. [doi: 10.1007/978-3-662-47854-7_33]
                 [32]  Rauchs  M,  Blandin  A,  Bear  K,  McKeon  S.  2nd  Global  Enterprise  Blockchain  Benchmarking  Study.  Cambridge:  University  of
                      Cambridge, 2019.
                 [33]  Valenta  M,  Sandner  P.  Comparison  of  Ethereum,  Hyperledger  Fabric  and  Corda.  Technical  Report,  Blockchain  Center,  Frankfurt
                      School, 2017. https://www.smallake.kr/wp-content/uploads/2017/07/2017_Comparison-of-Ethereum-Hyperledger-Corda.pdf
                 [34]  Leutenegger ST, Dias D. A modeling study of the TPC-C benchmark. ACM SIGMOD Record, 1993, 22(2): 22–31. [doi: 10.1145/
                      170036.170042]
                 [35]  Stets R, Barroso LA, Gharachorloo K, Verghese B. A detailed comparison of TPC-C versus TPC-B. In: Proc. of the 3rd Workshop on
                      Computer  Architecture  Evaluation  Using  Commercial  Workloads  in  Conjunction  with  HPCA.  2000.  https://www.barroso.org/
                      publications/caecw2k.pdf
                 [36]  Chen SM, Ailamaki A, Athanassoulis M, Gibbons PB, Johnson R, Pandis I, Stoica R. TPC-E vs. TPC-C: Characterizing the new TPC-E
                      benchmark via an I/O comparison study. ACM SIGMOD Record, 2011, 39(3): 5–10. [doi: 10.1145/1942776.1942778]
                 [37]  Dreseler M, Boissier M, Rabl T, Uflacker M. Quantifying TPC-H choke points and their optimizations. Proc. of the VLDB Endowment,
                      2020, 13(8): 1206–1220. [doi: 10.14778/3389133.3389138]
                 [38]  Poess M, Rabl T, Jacobsen HA. Analysis of TPC-DS: The first standard benchmark for SQL-based big data systems. In: Proc. of the
                      2017 Symp. on Cloud Computing. Santa Clara: ACM, 2017. 573–585. [doi: 10.1145/3127479.3128603]
                 [39]  Dinh TTA, Wang J, Chen G, Liu R, Ooi BC, Tan KL. BlockBench: A framework for analyzing private blockchains. In: Proc. of the
                      2017 ACM Int’l Conf. on Management of Data. Chicago: ACM, 2017. 1085–1100. [doi: 10.1145/3035918.3064033]
                 [40]  Hyperledger Caliper: A blockchain performance benchmark framework. 2023. https://github.com/hyperledger/caliper
                 [41]  Cheng Y, Wei K, Zhang YH, Jiang CY, Pang WW, Zhang Q, Liu B, Zhang LF, Liu TT, Wu YQ. TrustedBench: An efficient and user-
                      friendly distributed performance testing tool for blockchain system. In: Proc. of the 22nd IEEE Int’l Conf. on Trust, Security and Privacy
                      in Computing and Communications (TrustCom). Exeter: IEEE, 2023. 2141–2146. [doi: 10.1109/TrustCom60117.2023.00298]
                 [42]  Gramoli V, Guerraoui R, Lebedev A, Natoli C, Voron G. Diablo: A benchmark suite for blockchains. In: Proc. of the 18th European
                      Conf. on Computer Systems. 2023. 540–556. [doi: 10.1145/3552326.3567482]
                 [43]  Nasrulin B, De Vos M, Ishmaev G, Pouwelse J. Gromit: Benchmarking the performance and scalability of blockchain systems. In: Proc.
                      of the 2022 IEEE Int’l Conf. on Decentralized Applications and Infrastructures (DAPPS). Newark: IEEE, 2022. 56–63. [doi: 10.1109/
                      DAPPS55202.2022.00015]
                 [44]  Qian K, Liu YQ, Han YM, Wang K. BCadvisor: Enabling green blockchain systems through resource-oriented benchmarking. In: Proc.
                      of the 2022 IEEE Int’l Conf. on Communications. Seoul: IEEE, 2022. 4031–4036. [doi: 10.1109/ICC45855.2022.9838249]
                 [45]  Saingre D, Ledoux T, Menaud JM. BCTMark: A framework for benchmarking blockchain technologies. In: Proc. of the 17th IEEE/ACS
   254   255   256   257   258   259   260   261   262   263   264