Page 260 - 《软件学报》2025年第7期
P. 260

张孝 等: 区块链测试基准综述                                                                 3181


                      Int’l Conf. on Computer Systems and Applications (AICCSA). Antalya: IEEE, 2020. 1–8. [doi: 10.1109/AICCSA50499.2020.9316536]
                 [46]  Dong ZL, Zheng EM, Choon Y, Zomaya AY. DAGBENCH: A performance evaluation framework for DAG distributed ledgers. In:
                      Proc. of the 12th IEEE Int’l Conf. on Cloud Computing (CLOUD). Milan: IEEE, 2019. 264–271. [doi: 10.1109/CLOUD.2019.00053]
                 [47]  Wang R, Ye KJ, Wang Y, Xu CZ. xBCBench: A benchmarking tool for analyzing the performance of blockchain systems. In: Proc. of
                      the 3rd Int’l Conf. on Blockchain and Trustworthy Systems. Guangzhou: Springer, 2021. 101–114. [doi: 10.1007/978-981-16-7993-3_8]
                 [48]  Alom  I,  Ferdous  MS,  Chowdhury  MJM.  BlockMeter:  An  application  agnostic  performance  measurement  framework  for  private
                      blockchain platforms. arXiv:2202.05629, 2022.
                 [49]  Ren ZJ, Xiang HT, Zhou ZH, Wang N, Jin HQ. AlphaBlock: An evaluation framework for blockchain consensus algorithms. In: Proc. of
                      the 9th Int’l Workshop on Security in Blockchain and Cloud Computing. ACM, 2021. 17–22. [doi: 10.1145/3457977.3460297]
                 [50]  Klenik A, Kocsis I. Porting a benchmark with a classic workload to blockchain: TPC-C on Hyperledger Fabric. In: Proc. of the 37th
                      ACM/SIGAPP Symp. on Applied Computing. ACM, 2022. 290–298. [doi: 10.1145/3477314.3507006]
                 [51]  Zheng PL, Zheng ZB, Luo XP, Chen XP, Liu XZ. A detailed and real-time performance monitoring framework for blockchain systems.
                      In:  Proc.  of  the  40th  IEEE/ACM  Int’l  Conf.  on  Software  Engineering:  Software  Engineering  in  Practice  Track  (ICSE-SEIP).
                      Gothenburg: IEEE, 2018. 134–143.
                 [52]  Touloupou  M,  Themistocleous  M,  Iosif  E,  Christodoulou  K.  A  systematic  literature  review  toward  a  blockchain  benchmarking
                      framework. IEEE Access, 2022, 10: 70630–70644. [doi: 10.1109/ACCESS.2022.3188123]
                 [53]  Chacko JA, Mayer R, Fekete A, Gramoli V, Jacobsen HA. How to benchmark permissioned blockchains. In: Proc. of the 15th TPC
                      Technology  Conf.  on  Performance  Evaluation  &  Benchmarking  (TPCTC  2023).  2023.  https://gramoli.github.io/pubs/TPCTC2023-
                      preprint.pdf
                 [54]  Anderson JC, Lehnardt J, Slater N. CouchDB: The Definitive Guide: Time to Relax. Sebastopol: O’Reilly Media, 2010.
                 [55]  Dwork C, Naor M. Pricing via processing or combatting junk mail. In: Proc. of the 12th Annual Int’l Cryptology Conf. on Advances in
                      Cryptology. Santa Barbara: Springer, 1993. 139–147. [doi: 10.1007/3-540-48071-4_10]
                 [56]  Lamport L. The part-time parliament. ACM Trans. on Computer Systems, 1998, 16(2): 133–169. [doi: 10.1145/279227.279229]
                 [57]  Ongaro D, Ousterhout J. In search of an understandable consensus algorithm. In: Proc. of the 2014 USENIX Conf. on USENIX Annual
                      Technical Conf. Philadelphia: USENIX Association, 2014. 305–320.
                 [58]  Castro M, Liskov B. Practical Byzantine fault tolerance and proactive recovery. ACM Trans. on Computer Systems (TOCS), 2002,
                      20(4): 398–461. [doi: 10.1145/571637.571640]
                 [59]  Szabo N. Smart contracts: Building blocks for digital markets. EXTROPY: The Journal of Transhumanist Thought, 1996, 18(2): 28.
                 [60]  Luu  L,  Chu  DH,  Olickel  H,  Saxena  P,  Hobor  A.  Making  smart  contracts  smarter.  In:  Proc.  of  the  2016  ACM  SIGSAC  Conf.  on
                      Computer and Communications Security. Vienna: ACM, 2016. 254–269. [doi: 10.1145/2976749.2978309]
                 [61]  Cheng  JR,  Xie  LY,  Tang  XY,  Xiong  NX,  Liu  BY.  A  survey  of  security  threats  and  defense  on  blockchain.  Multimedia  Tools  and
                      Applications, 2021, 80(20): 30623–30652. [doi: 10.1007/s11042-020-09368-6]
                 [62]  Saad  M,  Spaulding  J,  Njilla  L,  Kamhoua  C,  Shetty  S,  Nyang  D,  Mohaisen  D.  Exploring  the  attack  surface  of  blockchain:  A
                      comprehensive survey. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1977–2008. [doi: 10.1109/COMST.2020.2975999]
                 [63]  Huang JJ, Han SM, You W, Shi WC, Liang B, Wu JZ, Wu YJ. Hunting vulnerable smart contracts via graph embedding based bytecode
                      matching. IEEE Trans. on Information Forensics and Security, 2021, 16: 2144–2156. [doi: 10.1109/TIFS.2021.3050051]
                 [64]  Zhuang Y, Liu ZG, Qian P, Liu Q, Wang X, He QM. Smart contract vulnerability detection using graph neural networks. In: Proc. of the
                      29th Int’l Joint Conf. on Artificial Intelligence. 2021. 3283–3290.
                 [65]  Apostolaki M, Zohar A, Vanbever L. Hijacking Bitcoin: Routing attacks on cryptocurrencies. In: Proc. of the 2017 IEEE Symp. on
                      Security and Privacy (SP). San Jose: IEEE, 2017. 375–392. [doi: 10.1109/SP.2017.29]
                 [66]  Marcus  Y,  Heilman  E,  Goldberg  S.  Low-resource  eclipse  attacks  on  Ethereum’s  peer-to-peer  network.  Cryptology  ePrint  Archive,
                      2018/236, 2018.
                 [67]  Saad  M,  Thai  MT,  Mohaisen  A.  POSTER:  Deterring  DDoS  attacks  on  blockchain-based  cryptocurrencies  through  mempool
                      optimization. In: Proc. of the 2018 Asia Conf. on Computer and Communications Security. Incheon: ACM, 2018. 809–811. [doi: 10.
                      1145/3196494.3201584]
                 [68]  Li  HN,  Wang  K,  Miyazaki  T,  Xu  CH,  Guo  S,  Sun  YF.  Trust-enhanced  content  delivery  in  blockchain-based  information-centric
                      networking. IEEE Network, 2019, 33(5): 183–189. [doi: 10.1109/MNET.2019.1800299]
                 [69]  Swathi P, Modi C, Patel D. Preventing sybil attack in blockchain using distributed behavior monitoring of miners. In: Proc. of the 10th
                      Int’l  Conf.  on  Computing,  Communication  and  Networking  Technologies  (ICCCNT).  Kanpur:  IEEE,  2019.  1–6.  [doi: 10.1109/
                      ICCCNT45670.2019.8944507]
   255   256   257   258   259   260   261   262   263   264   265