Page 24 - 《软件学报》2025年第7期
P. 24

王树兰 等: eDPRF: 高效的差分隐私随机森林训练算法                                                   2945


                 [11]  Zhang  XJ,  He  FC,  Gai  JY,  Bao  JD,  Huang  HY,  Du  XG.  A  differentially  private  federated  learning  model  for  fingerprinting  indoor
                     localization in edge computing. Journal of Computer Research and Development, 2022, 59(12): 2667–2688 (in Chinese with English
                     abstract). [doi: 10.7544/issn1000-1239.20210270]
                 [12]  McKenna R, Sheldon DR. Permute-and-Flip: A new mechanism for differentially private selection. In: Proc. of the 34th Int’l Conf. on
                     Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020. 17. [doi: 10.5555/3495724.3495741]
                                                                               ®
                 [13]  Dwork C, Roth A. The algorithmic foundations of differential privacy. Foundations and Trends  in Theoretical Computer Science, 2014,
                     9(3–4): 211–407. [doi: 10.1561/0400000042]
                 [14]  Patil A, Singh S. Differential private random forest. In: Proc. of the 2014 Int’l Conf. on Advances in Computing, Communications and
                     Informatics. Delhi: IEEE, 2014. 2623–2630. [doi: 10.1109/ICACCI.2014.6968348]
                 [15]  Mu HR, Ding LP, Song YN, Lu GQ. DiffPRFs: Random forest under differential privacy. Journal on Communications, 2016, 37(9):
                     175–182 (in Chinese with English abstract). [doi: 10.11959/j.issn.1000-436x.2016169]
                 [16]  Zhang YL, Peng PF, Ning Y. Random forest algorithm based on differential privacy protection. In: Proc. of the 20th Int’l Conf. on Trust,
                     Security  and  Privacy  in  Computing  and  Communications.  Shenyang:  IEEE,  2021.  1259–1264.  [doi:  10.1109/TrustCom53373.2021.
                     00172]
                 [17]  Wang  FW,  Xie  MY,  Tan  ZY,  Li  QR,  Wang  CG.  Preserving  differential  privacy  in  deep  learning  based  on  feature  relevance  region
                     segmentation. IEEE Trans. on Emerging Topics in Computing, 2024, 12(1): 307–315. [doi: 10.1109/TETC.2023.3244174]
                 [18]  Guan ZT, Sun XW, Shi LY, Wu LF, Du XJ. A differentially private greedy decision forest classification algorithm with high utility.
                     Computers & Security, 2020, 96: 101930. [doi: 10.1016/j.cose.2020.101930]
                 [19]  Zhao Y, Du JT, Chen JJ. Scenario-based adaptations of differential privacy: A technical survey. ACM Computing Surveys, 2024, 56(8):
                     199. [doi: 10.1145/3651153]
                 [20]  Niu XF, Ma WP. An ensemble learning model based on differentially private decision tree. Complex & Intelligent Systems, 2023, 9(5):
                     5267–5280. [doi: 10.1007/s40747-023-01017-3]
                 [21]  Wang CY, Chen SY, Li XC. Adaptive differential privacy budget allocation algorithm based on random forest. In: Proc. of the 16th Int’l
                     Conf. on Bio-inspired Computing: Theories and Applications. Taiyuan: Springer, 2021. 201–216. [doi: 10.1007/978-981-19-1256-6_15]
                 [22]  Li X, Qin BD, Luo YY, Zheng D. A differential privacy budget allocation algorithm based on out-of-bag estimation in random forest.
                     Mathematics, 2022, 10(22): 4338. [doi: 10.3390/math10224338]
                 [23]  Deng  W,  Chen  XT,  Zhang  QH,  Wang  GY.  Differential  privacy  protection  algorithms  based  on  tree  model.  Journal  of  Chongqing
                     University of Posts and Telecommunications (Natural Science Edition), 2020, 32(5): 848–856 (in Chinese with English abstract). [doi: 10.
                     3979/j.issn.1673-825X.2020.05.018]
                 [24]  Dwork  C,  Mcsherry  F,  Nissim  K,  Smith  A.  Calibrating  noise  to  sensitivity  in  private  data  analysis.  In:  Proc.  of  the  3rd  Theory  of
                     Cryptography Conference. New York: Springer, 2006. 265–284. [doi: 10.1007/11681878_14]
                 [25]  McSherry F, Talwar K. Mechanism design via differential privacy. In: Proc. of the 48th Annual IEEE Symp. on Foundations of Computer
                     Science. Providence: IEEE, 2007. 94–103. [doi: 10.1109/FOCS.2007.66]
                 [26]  Mustafa M. Diabetes prediction dataset. 2024. http://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset/data
                 [27]  Freire A, Veloso M, Barreto G. Wall-following robot navigation data. 2024. http://archive.ics.uci.edu/dataset/194/wall+following+robot+
                     navigation+data

                 附中文参考文献:
                  [1]  邓成龙, 关贝, 刘德丰, 刘兰祥, 石清磊, 王浩然, 王永吉. 基于随机森林的宫颈鳞癌放化疗疗效预测. 软件学报, 2021, 32(12):
                     3960–3976. http://www.jos.org.cn/1000-9825/6136.htm [doi: 10.13328/j.cnki.jos.006136]
                 [11]  张学军, 何福存, 盖继扬, 鲍俊达, 黄海燕, 杜晓刚. 边缘计算下指纹室内定位差分私有联邦学习模型. 计算机研究与发展, 2022,
                     59(12): 2667–2688. [doi: 10.7544/issn1000-1239.20210270]
                 [15]  穆海蓉, 丁丽萍, 宋宇宁, 卢国庆. DiffPRFs: 一种面向随机森林的差分隐私保护算法. 通信学报, 2016, 37(9): 175–182. [doi:
                     10.11959/j.issn.1000-436x.2016169]
                 [23]  邓蔚, 陈秀婷, 张清华, 王国胤. 基于树模型的差分隐私保护算法. 重庆邮电大学学报            (自然科学版), 2020, 32(5): 848–856. [doi:
                     10.3979/j.issn.1673-825X.2020.05.018]
   19   20   21   22   23   24   25   26   27   28   29