Page 73 - 《软件学报》2025年第5期
P. 73

胡强 等: 融合潜在联合词与异质关联兼容的             Web API 推荐                                    1973


                 [35]  Briskilal  J,  Subalalitha  CN.  An  ensemble  model  for  classifying  idioms  and  literal  texts  using  BERT  and  RoBERTa.  Information
                     Processing & Management, 2022, 59(1): 102756. [doi: 10.1016/J.IPM.2021.102756]
                 [36]  Yin JH, Wang JY. A Dirichlet multinomial mixture model-based approach for short text clustering. In: Proc. of the 20th ACM SIGKDD
                     Int’l Conf. on Knowledge Discovery and Data Mining. New York: ACM, 2014. 233–242. [doi: 10.1145/2623330.2623715]
                 [37]  Lian SX, Tang MD. API recommendation for Mashup creation based on neural graph collaborative filtering. Connection Science, 2022,
                     34(1): 124–138. [doi: 10.1080/09540091.2021.1974819]
                 [38]  Yu  T,  Yu  DJ,  Wang  DJ,  Hu  XY.  Web  service  recommendation  for  Mashup  creation  based  on  graph  network.  The  Journal  of
                     Supercomputing, 2023, 79(8): 8993–9020. [doi: 10.1007/s11227-022-05011-3]
                 [39]  Liu MY, Tu ZY, Xu HC, Xu XF, Wang ZJ. DySR: A dynamic graph neural network based service bundle recommendation model for
                     Mashup creation. IEEE Trans. on Services Computing, 2023, 16(4): 2592–2605. [doi: 10.1109/TSC.2023.3234293]
                 [40]  Cai XH, Huang C, Xia LH, Ren XB. LightGCL: Simple yet effective graph contrastive learning for recommendation. In: Proc. of the 11th
                     Int’l Conf. on Learning Representations. Kigali: ICLR, 2023.
                 [41]  Wang Y, Chen JW, Huang Q, Xia X, Jiang B. Deep learning-based open API recommendation for Mashup development. Science China
                     Information Sciences, 2023, 66(7): 172102. [doi: 10.1007/s11432-021-3531-0]
                 [42]  Wu SW, Sun F, Zhang WT, Xie X, Cui B. Graph neural networks in recommender systems: A survey. ACM Computing Surveys, 2023,
                     55(5): 97. [doi: 10.1145/3535101]

                 附中文参考文献:
                  [2]  陆佳炜, 赵伟, 张元鸣, 梁倩卉, 肖刚. 基于  TWE-NMF  主题模型的  Mashup  服务聚类方法. 软件学报, 2023, 34(6): 2727–2748. [doi:
                     10.13328/j.cnki.jos.006508]
                  [3]  陆佳炜, 吴涵, 张元鸣, 梁倩卉, 肖刚. 融合功能语义关联计算与密度峰值检测的         Mashup  服务聚类方法. 计算机学报, 2021, 44(7):
                     1501–1516. [doi: 10.11897/SP.J.1016.2021.01501]
                 [28]  刘建勋, 石敏, 周栋, 唐明董, 张婷婷. 基于主题模型的    Mashup  标签推荐方法. 计算机学报, 2017, 40(2): 520–534. [doi: 10.11897/
                     SP.J.1016.2017.00520]


                             胡强(1980-), 男, 博士, 教授, 博士生导师, CCF             李浩杰(1990-), 男, 博士生, 主要研究领域为图
                            专业会员, 主要研究领域为服务计算, 人工智能.                     数据挖掘, 自然语言处理.




                             綦浩泉(1998-), 男, 硕士生, CCF  学生会员, 主             杜军威(1974-), 男, 博士, 教授, 博士生导师,
                            要研究领域为云计算, 自然语言处理.                           CCF  杰出会员, 主要研究领域为人工智能, 软件
                                                                         工程.
   68   69   70   71   72   73   74   75   76   77   78