Page 71 - 《软件学报》2025年第5期
P. 71

胡强 等: 融合潜在联合词与异质关联兼容的             Web API 推荐                                    1971


                    由图  9–图  11  可见, 除  K=7  时  Recall 与  Precision  分别在  6  个词与  4  个词中出现轻微波动外, 随潜在特征词融
                 入数量增加, Recall、Precision  与  NDCG  指标随之提升, 在词数为     6  时到达峰值. 当超过     6  个词, 模型效果会出现
                 下降趋势. 上述趋势与服务描述文本较短有关, 当融入的场景特征词过多时, 会影响功能特征的语义表达强度. 基
                 于此, 将潜在特征词提取数量统一设置为             6.

                 5   结束语

                    为提升   Mashup  服务的组件   Web API 推荐质量, 提出一种融合潜在联合词与异质关联兼容的                  Web API 推荐
                 方法. 设计了融入场景契合度的服务描述特征词提取模型                  SYAKE, 为  Mashup  服务需求和  Web API 提取表示应用
                 场景的潜在联合词, 借助潜在联合词提升了功能匹配的计算精度. 在此基础上, 借助协同过滤思想, 为                              Mashup  服
                 务需求构建高质量的候选组件           Web API 集合. 构建了一种利用异质关联兼容提升            Web API 推荐质量的方法, 相比
                 当前流行的以协作兼容提升          Web API 推荐的方法, 异质关联兼容能够有效提升推荐质量和多样性. 实验证明, 本
                 文方法在推荐的精确度、召回率和多样性等指标上显著优于对比方法.
                    未来研究工作主要是挖掘更多类型的              Web API 关联, 如  API 调用者关联、地理位置关联等, 以进一步改善关
                 联兼容对推荐质量的提升效果. 需要注意的是在后续                  Web API 的关联挖掘中, 需要分析不同类型的关联对              Web
                 API 推荐质量评价指标的差异化影响, 以期将有利于提高推荐质量的关联纳入到推荐方法中. 同时, 关联密度对推
                 荐质量的影响问题也需要加以关注和探讨.

                 References:
                  [1]  Sang CY, Deng XY, Liao SG. Mashup-oriented Web API recommendation via full-text semantic mining of developer requirements. IEEE
                     Trans. on Services Computing, 2023, 16(4): 2755–2768. [doi: 10.1109/TSC.2023.3245652]
                  [2]  Lu JW, Zhao W, Zhang YM, Liang QH, Xiao G. TWE-NMF topic model-based approach for Mashup service clustering. Ruan Jian Xue
                     Bao/Journal of Software, 2023, 34(6): 2727–2748 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6508.htm [doi: 10.
                     13328/j.cnki.jos.006508]
                  [3]  Lu  JW,  Wu  H,  Zhang  YM,  Liang  QH,  Xiao  G.  Mashup  service  clustering  method  via  integrating  functional  semantic  association
                     calculation and density peak detection. Chinese Journal of Computers, 2021, 44(7): 1501–1516 (in Chinese with English abstract). [doi:
                     10.11897/SP.J.1016.2021.01501]
                  [4]  Qi  LY,  Song  HB,  Zhang  XY,  Srivastava  G,  Xu  XL,  Yu  S.  Compatibility-aware  Web  API  recommendation  for  Mashup  creation  via
                     textual description mining. ACM Trans. on Multimedia Computing, Communications, and Applications, 2021, 17(1s): 20. [doi: 10.1145/
                     3417293]
                  [5]  Qi LY, He Q, Chen FF, Zhang XY, Dou WC, Ni Q. Data-driven Web APIs recommendation for building Web applications. IEEE Trans.
                     on Big Data, 2022, 8(3): 685–698. [doi: 10.1109/TBDATA.2020.2975587]
                  [6]  Chen  NX,  Cardozo  N,  Clarke  S.  Goal-driven  service  composition  in  mobile  and  pervasive  computing.  IEEE  Trans.  on  Services
                     Computing, 2018, 11(1): 49–62. [doi: 10.1109/TSC.2016.2533348]
                  [7]  Qi LY, He Q, Chen FF, Dou WC, Wan SH, Zhang XY, Xu XL. Finding all you need: Web APIs recommendation in Web of things
                     through keywords search. IEEE Trans. on Computational Social Systems, 2019, 6(5): 1063–1072. [doi: 10.1109/TCSS.2019.2906925]
                  [8]  Gu Q, Cao J, Peng QY. Service package recommendation for Mashup creation via Mashup textual description mining. In: Proc. of the
                     2016 IEEE Int’l Conf. on Web Services. San Francisco: IEEE, 2016. 452–459. [doi: 10.1109/ICWS.2016.65]
                  [9]  Li HC, Liu JX, Cao BQ, Tang MD, Liu XQ, Li B. Integrating tag, topic, co-occurrence, and popularity to recommend Web APIs for
                     Mashup creation. In: Proc. of the 14th IEEE Int’l Conf. on Services Computing. Honolulu: IEEE, 2017. 84–91. [doi: 10.1109/SCC.2017.19]
                 [10]  Zhang  N,  Wang  J,  Ma  YT.  Mining  domain  knowledge  on  service  goals  from  textual  service  descriptions.  IEEE  Trans.  on  Services
                     Computing, 2020, 13(3): 488–502. [doi: 10.1109/TSC.2017.2693147]
                 [11]  Tang MD, Xie FF, Liang W, Xia YM, Li KC. Predicting new composition relations between Web services via link analysis. Int’l Journal
                     of Computational Science and Engineering, 2019, 20(1): 88–101. [doi: 10.1504/IJCSE.2019.103256]
                 [12]  Su C, Huang DL. Hybrid recommender system based on deep learning model. Int’l Journal of Performability Engineering, 2020, 16(1):
                     118–129. [doi: 10.23940/ijpe.20.01.p13.118129]
                 [13]  Botangen KA, Yu J, Sheng QZ, Han YB, Yongchareon S. Geographic-aware collaborative filtering for Web service recommendation.
   66   67   68   69   70   71   72   73   74   75   76