Page 72 - 《软件学报》2025年第5期
P. 72

1972                                                       软件学报  2025  年第  36  卷第  5  期


                     Expert Systems with Applications, 2020, 151: 113347. [doi: 10.1016/j.eswa.2020.113347]
                 [14]  Yao  LN,  Wang  XZ,  Sheng  QZ,  Benatallah  B,  Huang  CR.  Mashup  recommendation  by  regularizing  matrix  factorization  with  API
                     co-invocations. IEEE Trans. on Services Computing, 2021, 14(2): 502–515. [doi: 10.1109/TSC.2018.2803171]
                 [15]  Tang B, Tang MD, Xia YM, Hsieh MY. Composition pattern-aware Web service recommendation based on depth factorisation machine.
                     Connection Science, 2021, 33(4): 870–890. [doi: 10.1080/09540091.2021.1911933]
                 [16]  Cao  BQ,  Liu  JX,  Wen  YP,  Li  HT,  Xiao  QX,  Chen  JJ.  QoS-aware  service  recommendation  based  on  relational  topic  model  and
                     factorization machines for IoT Mashup applications. Journal of Parallel and Distributed Computing, 2019, 132: 177–189. [doi: 10.1016/j.
                     jpdc.2018.04.002]
                 [17]  Nguyen  M,  Yu  J,  Nguyen  T,  Han  YB.  Attentional  matrix  factorization  with  context  and  co-invocation  for  service  recommendation.
                     Expert Systems with Applications, 2021, 186: 115698. [doi: 10.1016/j.eswa.2021.115698]
                 [18]  Kang GS, Liu JX, Xiao Y, Cao BQ, Xu Y, Cao ML. Neural and attentional factorization machine-based Web API recommendation for
                     Mashup development. IEEE Trans. on Network and Service Management, 2021, 18(4): 4183–4196. [doi: 10.1109/TNSM.2021.3125028]
                 [19]  Xiao  Y,  Liu  JX,  Kang  GS,  Hu  R,  Cao  BQ,  Cao  YC,  Shi  M.  Structure  reinforcing  and  attribute  weakening  network  based  API
                     recommendation approach for Mashup creation. In: Proc. of the 2020 IEEE Int’l Conf. on Web Services. Beijing: IEEE, 2020. 541–548.
                     [doi: 10.1109/ICWS49710.2020.00078]
                 [20]  Liu MY, Zhu YQ, Xu HC, Tu ZY, Wang ZJ. T2L2: A tiny three linear layers model for service Mashup creation. In: Proc. of the 19th Int’l
                     Conf. on Service-oriented Computing. Berlin: Springer, 2021. 317–331. [doi: 10.1007/978-3-030-91431-8_20]
                 [21]  Ma YT, Geng X, Wang J. A deep neural network with multiplex interactions for cold-start service recommendation. IEEE Trans. on
                     Engineering Management, 2021, 68(1): 105–119. [doi: 10.1109/tem.2019.2961376]
                 [22]  Yan  RY,  Fan  YS,  Zhang  J,  Zhang  JQ,  Lin  HZ.  Service  recommendation  for  composition  creation  based  on  collaborative  attention
                     convolutional network. In: Proc. of the 2021 IEEE Int’l Conf. on Web Services. Chicago: IEEE, 2021. 397–405. [doi: 10.1109/ICWS
                     53863.2021.00059]
                 [23]  Cao  BQ,  Peng  M,  Qing  YY,  Liu  JX,  Kang  GS,  Li  B,  Fletcher  KK.  Web  API  recommendation  via  combining  graph  attention
                     representation and deep factorization machines quality prediction. Concurrency and Computation: Practice and Experience, 2022, 34(21):
                     e7069. [doi: 10.1002/cpe.7069]
                 [24]  Huang DL, Tong XL, Yang HD. Web service recommendation based on graph attention network (GAT-WSR). In: Proc. of the 2022 Int’l
                     Conf. on Computer Communication and Informatics. Coimbatore: IEEE, 2022. 1–5. [doi: 10.1109/ICCCI54379.2022.9740941]
                 [25]  Almarimi N, Ouni A, Bouktif S, Mkaouer MW, Kula RG, Saied MA. Web service API recommendation for automated Mashup creation
                     using multi-objective evolutionary search. Applied Soft Computing, 2019, 85: 105830. [doi: 10.1016/j.asoc.2019.105830]
                 [26]  Gong WW, Zhang XY, Chen YF, He Q, Beheshti A, Xu XL, Yan C, Qi LY. DAWAR: Diversity-aware Web APIs recommendation for
                     Mashup creation based on correlation graph. In: Proc. of the 45th Int’l ACM SIGIR Conf. on Research and Development in Information
                     Retrieval. Madrid: ACM, 2022. 395–404. [doi: 10.1145/3477495.3531962]
                 [27]  Campos R, Mangaravite V, Pasquali A, Jorge AM, Nunes C, Jatowt A. A text feature based automatic keyword extraction method for
                     single documents. In: Proc. of the 40th European on Conf. on Information Retrieval. Grenoble: Springer, 2018. 684–691. [doi: 10.1007/
                     978-3-319-76941-7_63]
                 [28]  Liu  JX,  Shi  M,  Zhou  D,  Tang  MD,  Zhang  TT.  Topic  model  based  tag  recommendation  method  for  Mashups.  Chinese  Journal  of
                     Computers, 2017, 40(2): 520–534 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2017.00520]
                 [29]  Gao TY, Yao XC, Chen DQ. SimCSE: Simple contrastive learning of sentence embeddings. In: Proc. of the 2021 Conf. on Empirical
                     Methods in Natural Language Processing. Punta Cana: ACL, 2021. 6894–6910. [doi: 10.18653/v1/2021.emnlp-main.552]
                 [30]  Cen YK, Zou X, Zhang JW, Yang HX, Zhou JR, Tang J. Representation learning for attributed multiplex heterogeneous network. In:
                     Proc. of the 25th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019. 1358–1368. [doi: 10.
                     1145/3292500.3330964]
                 [31]  Dong YX, Chawla NV, Swami A. Metapath2vec: Scalable representation learning for heterogeneous networks. In: Proc. of the 23rd ACM
                     SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. Halifax: ACM, 2017. 135–144. [doi: 10.1145/3097983.3098036]
                 [32]  Jiang R, Han SS, Yu YM, Ding WP. An access control model for medical big data based on clustering and risk. Information Sciences,
                     2023, 621: 691–707. [doi: 10.1016/j.ins.2022.11.102]
                 [33]  Wu SQ, Shen SG, Xu XL, Chen Y, Zhou XK, Liu DN, Xue X, Qi LY. Popularity-aware and diverse Web APIs recommendation based on
                     correlation graph. IEEE Trans. on Computational Social Systems, 2023, 10(2): 771–782. [doi: 10.1109/TCSS.2022.3168595]
                 [34]  Zhao Y, Qiao Y, He KQ. A novel tagging augmented LDA model for clustering. Int’l Journal of Web Services Research, 2019, 16(3):
                     59–77. [doi: 10.4018/IJWSR.2019070104]
   67   68   69   70   71   72   73   74   75   76   77