Page 48 - 《软件学报》2025年第5期
P. 48

1948                                                       软件学报  2025  年第  36  卷第  5  期


                 [65]  Gupta A, Levin R. The online submodular cover problem. In: Proc. of the 2020 ACM-SIAM Symp. on Discrete Algorithms. Salt Lake
                     City: SIAM, 2020. 1525–1537. [doi: 10.1137/1.9781611975994.94]
                 [66]  Iyer RK, Khargoankar N, Bilmes JA, Asanani H. Submodular combinatorial information measures with applications in machine learning.
                     In: Proc. of the 32nd Algorithmic Learning Theory. ALT, 2021. 722–754.
                 [67]  Kothawade  S,  Savarkar  A,  Iyer  V,  Ramakrishnan  G,  Iyer  R.  CLINICAL:  Targeted  active  learning  for  imbalanced  medical  image
                     classification.  In:  Proc.  of  the  1st  Workshop  on  Medical  Image  Learning  with  Limited  and  Noisy  Data.  Singapore:  Springer,  2022.
                     119–129. [doi: 10.1007/978-3-031-16760-7_12]
                 [68]  Chen H, Tao R, Fan Y, Wang YD, Wang JD, Schiele B, Xie X, Raj B, Savvides M. SoftMatch: Addressing the quantity-quality trade-off
                     in semi-supervised learning. arXiv:2301.10921, 2023.
                 [69]  Sener O, Savarese S. Active learning for convolutional neural networks: A core-set approach. In: Proc. of the 6th Int’l Conf. on Learning
                     Representations. Vancouver: OpenReview.net, 2018.
                 [70]  Belouadah E, Popescu A, Aggarwal U, Saci L. Active class incremental learning for imbalanced datasets. In: Proc. of the 2020 European
                     Conf. on Computer Vision. Glasgow: Springer, 2020. 146–162. [doi: 10.1007/978-3-030-65414-6_12]
                 [71]  Kaplan J, McCandlish S, Henighan T, Brown TB, Chess B, Child R, Gray S, Radford A, Wu J, Amodei D. Scaling laws for neural
                     language models. arXiv:2001.08361, 2020.
                 [72]  Cao KD, Wei C, Gaidon A, Arechiga N, Ma TY. Learning imbalanced datasets with label-distribution-aware margin loss. In: Proc. of the
                     33rd Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 140.
                 [73]  Goh HW, Mueller J. ActiveLab: Active learning with re-labeling by multiple annotators. arXiv:2301.11856, 2023.
                 [74]  Goh HW, Tkachenko U, Mueller J. CROWDLAB: Supervised learning to infer consensus labels and quality scores for data with multiple
                     annotators. arXiv:2210.06812, 2022.
                 [75]  Northcutt C, Jiang L, Chuang I. Confident learning: Estimating uncertainty in dataset labels. Journal of Artificial Intelligence Research,
                     2021, 70: 1373–1411. [doi: 10.1613/jair.1.12125]
                 [76]  Chong D, Hong J, Manning C. Detecting label errors by using pre-trained language models. In: Proc. of the 2022 Conf. on Empirical
                     Methods in Natural Language Processing. Abu Dhabi: ACL, 2022. 9074–9091. [doi: 10.18653/v1/2022.emnlp-main.618]

                 附中文参考文献:
                 [34]  翟宇鹏, 洪玫, 杨秋辉. 功能需求到测试用例的可追溯性研究. 计算机科学, 2017, 44(11A): 480–484.


                             董黎明(1994-), 女, 博士, 主要研究领域为软件                 孟庆龙(1999-), 男, 硕士生, 主要研究领域为软
                            工程, 软件研发效能, 软件过程, 软件可追踪性,                    件工程, 软件研发效能.
                            可信人工智能.



                             张贺(1971-), 男, 博士, 教授, 博士生导师, CCF             匡宏宇(1985-), 男, 博士, 助理研究员, CCF  专
                            高级会员, 主要研究领域为软件工程, 开发运维                      业会员, 主要研究领域为软件可追踪性, 自动化
                            一体化, 软件研发效能, 软件安全, 经验及循证软                    软件可追踪分析, 情绪分析, 文本分析, 程序分析.
                            件工程, 区块链.
   43   44   45   46   47   48   49   50   51   52   53