Page 45 - 《软件学报》2025年第5期
P. 45

董黎明 等: 结合主动学习和半监督学习的软件可追踪性恢复框架                                                  1945


                 追踪性恢复任务上的有效性.
                    未来工作一方面将持续验证本文提出的               STRACE(AL+SSL) 框架在其他软件企业和开源社区项目上的有效
                 性. 同时将持续拓展和优化框架, 适配多种制品间的可追踪性恢复任务. 另一方面, 未来工作将持续深入研究链接
                 标注质量及成本问题, 提供更符合实践需求的软件可追踪性质量优化方案.

                 References:
                  [1]  Watkins R, Neal M. Why and how of requirements tracing. IEEE Software, 1994, 11(4): 104–106. [doi: 10.1109/52.300100]
                  [2]  Kukkanen J, Väkeväinen K, Kauppinen M, Uusitalo E. Applying a systematic approach to link requirements and testing: A case study. In:
                     Proc. of the 16th Asia-Pacific Software Engineering Conf. Batu Ferringhi: IEEE, 2009. 482–488. [doi: 10.1109/apsec.2009.62]
                  [3]  De Toledo SS, Martini A, Sjøberg DIK. Identifying architectural technical debt, principal, and interest in microservices: A multiple-case
                     study. Journal of Systems and Software, 2021, 177: 110968. [doi: 10.1016/j.jss.2021.110968]
                  [4]  Dasanayake S, Aaramaa S, Markkula J, Oivo M. Impact of requirements volatility on software architecture: How do software teams keep
                     up with ever-changing requirements? Journal of Software: Evolution and Process, 2019, 31(6): e2160. [doi: 10.1002/smr.2160]
                  [5]  Fucci D, Alégroth E, Axelsson T. When traceability goes awry: An industrial experience report. Journal of Systems and Software, 2022,
                     192: 111389. [doi: 10.1016/j.jss.2022.111389]
                  [6]  Cleland-Huang  J,  Chang  CK,  Christensen  M.  Event-based  traceability  for  managing  evolutionary  change.  IEEE  Trans.  on  Software
                     Engineering, 2003, 29(9): 796–810. [doi: 10.1109/tse.2003.1232285]
                  [7]  Hayes JH, Dekhtyar A, Sundaram SK, Holbrook EA, Vadlamudi S, April A. Requirements tracing on target (retro): Improving software
                     maintenance through traceability recovery. Innovations in Systems and Software Engineering, 2007, 3(3): 193–202. [doi: 10.1007/s11334-
                     007-0024-1]
                  [8]  Mills C, Escobar-Avila J, Haiduc S. Automatic traceability maintenance via machine learning classification. In: Proc. of the 2018 IEEE
                     Int’l Conf. on Software Maintenance and Evolution. Madrid: IEEE, 2018. 369–380. [doi: 10.1109/icsme.2018.00045]
                  [9]  Chawla  NV,  Bowyer  KW,  Hall  LO,  Kegelmeyer  WP.  SMOTE:  Synthetic  minority  over-sampling  technique.  Journal  of  Artificial
                     Intelligence Research, 2002, 16(1): 321–357. [doi: 10.1613/jair.953]
                 [10]  Rath M, Rendall J, Guo JLC, Cleland-Huang J, Mäder P. Traceability in the wild: Automatically augmenting incomplete trace links. In:
                     Proc. of the 40th Int’l Conf. on Software Engineering. Gothenburg: ACM, 2018. 834–845. [doi: 10.1145/3180155.3180207]
                 [11]  Kaushik N, Tahvildari L, Moore M. Reconstructing traceability between bugs and test cases: An experimental study. In: Proc. of the 18th
                     Working Conf. on Reverse Engineering. Limerick: IEEE, 2011. 411–414. [doi: 10.1109/wcre.2011.58]
                 [12]  Moran  K,  Palacio  DN,  Bernal-Cárdenas  C,  McCrystal  D,  Poshyvanyk  D,  Shenefiel  C,  Johnson  J.  Improving  the  effectiveness  of
                     traceability link recovery using hierarchical Bayesian networks. In: Proc. of the 42nd Int’l Conf. on Software Engineering. Seoul: ACM,
                     2020. 873–885. [doi: 10.1145/3377811.3380418]
                 [13]  Guo J, Cheng JH, Cleland-Huang J. Semantically enhanced software traceability using deep learning techniques. In: Proc. of the 39th
                     IEEE/ACM Int’l Conf. on Software Engineering. Buenos Aires: IEEE, 2017. 3–14. [doi: 10.1109/icse.2017.9]
                 [14]  Rodriguez AD, Cleland-Huang J, Falessi D. Leveraging intermediate artifacts to improve automated trace link retrieval. In: Proc. of the
                     2021  IEEE  Int’l  Conf.  on  Software  Maintenance  and  Evolution.  Luxembourg:  IEEE,  2021.  81–92.  [doi:  10.1109/icsme52107.2021.
                     00014]
                 [15]  Gotel  OCZ,  Finkelstein  CW.  An  analysis  of  the  requirements  traceability  problem.  In:  Proc.  of  the  1994  IEEE  Int’l  Conf.  on
                     Requirements Engineering. Colorado Springs: IEEE, 1994. 94–101. [doi: 10.1109/icre.1994.292398]
                 [16]  Gotel O, Cleland-Huang J, Hayes JH, Zisman A, Egyed A, Grünbacher P, Dekhtyar A, Antoniol G, Maletic J. The grand challenge of
                     traceability (v1.0). In: Cleland-Huang J, Gotel O, Zisman A, eds. Software and Systems Traceability. London: Springer, 2012. 343–409.
                     [doi: 10.1007/978-1-4471-2239-5_16]
                 [17]  Rempel  P,  Mäder  P.  Preventing  defects:  The  impact  of  requirements  traceability  completeness  on  software  quality.  IEEE  Trans.  on
                     Software Engineering, 2017, 43(8): 777–797. [doi: 10.1109/tse.2016.2622264]
                 [18]  Cleland-Huang  J.  Traceability  in  agile  projects.  In:  Cleland-Huang  J,  Gotel  O,  Zisman  A,  eds.  Software  and  Systems  Traceability.
                     London: Springer, 2012. 265–275. [doi: 10.1007/978-1-4471-2239-5_12]
                 [19]  Neumuller C, Grunbacher P. Automating software traceability in very small companies: A case study and lessons learned. In: Proc. of the
                     21st IEEE/ACM Int’l Conf. on Automated Software Engineering. Tokyo: IEEE, 2006. 145–156. [doi: 10.1109/ase.2006.25]
                 [20]  Panis MC. Successful deployment of requirements traceability in a commercial engineering organization … really. In: Proc. of the 18th
                     IEEE Int’l Requirements Engineering Conf. Sydney: IEEE, 2010. 303–307. [doi: 10.1109/re.2010.43]
   40   41   42   43   44   45   46   47   48   49   50