Page 47 - 《软件学报》2025年第5期
P. 47

董黎明 等: 结合主动学习和半监督学习的软件可追踪性恢复框架                                                  1947


                 [44]  Dong LM, Zhang H, Liu W, Weng ZL, Kuang HY. Semi-supervised pre-processing for learning-based traceability framework on real-
                     world  software  projects.  In:  Proc.  of  the  30th  ACM  Joint  European  Software  Engineering  Conf.  and  Symp.  on  the  Foundations  of
                     Software Engineering. Singapore: ACM, 2022. 570–582. [doi: 10.1145/3540250.3549151]
                 [45]  Le  TDB,  Linares-Vasquez  M,  Lo  D,  Poshyvanyk  D.  RCLinker:  Automated  linking  of  issue  reports  and  commits  leveraging  rich
                     contextual information. In: Proc. of the 23rd IEEE Int’l Conf. on Program Comprehension. Florence: IEEE, 2015. 36–47. [doi: 10.1109/
                     icpc.2015.13]
                 [46]  Cavnar WB. Using an n-gram-based document representation with a vector processing retrieval model. In: Harman DK, ed. Proc. of the
                     3rd Text Retrieval Conf. (TREC-3). Gaithersburg: National Institute of Standards and Technology, 1994. 269–278.
                 [47]  Gethers  M,  Oliveto  R,  Poshyvanyk  D,  De  Lucia  A.  On  integrating  orthogonal  information  retrieval  methods  to  improve  traceability
                     recovery. In: Proc. of the 27th IEEE Int’l Conf. on Software Maintenance. Williamsburg: IEEE, 2011. 133–142. [doi: 10.1109/icsm.2011.
                     6080780]
                 [48]  Chen  BH,  Chen  LL,  Zhang  C,  Peng  X.  BuildFast:  History-aware  build  outcome  prediction  for  fast  feedback  and  reduced  cost  in
                     continuous integration. In: Proc. of the 35th IEEE/ACM Int’l Conf. on Automated Software Engineering. Melbourne: ACM, 2020. 42–53.
                     [doi: 10.1145/3324884.3416616]
                 [49]  Sun Y, Wang Q, Yang Y. FRLink: Improving the recovery of missing issue-commit links by revisiting file relevance. Information and
                     Software Technology, 2017, 84: 33–47. [doi: 10.1016/j.infsof.2016.11.010]
                 [50]  Sohn K, Berthelot D, Li CL, Zhang ZZ, Carlini N, Cubuk ED, Kurakin A, Zhang H, Raffel C. FixMatch: Simplifying semi-supervised
                     learning with consistency and confidence. In: Proc. of the 34th Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran
                     Associates Inc., 2020. 596–608.
                 [51]  Zou Y, Yu ZD, Kumar BVK, Wang JS. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In:
                     Proc. of the 15th European Conf. on Computer Vision. Munich: Springer, 2018. 297–313. [doi: 10.1007/978-3-030-01219-9_18]
                 [52]  Zou Y, Yu ZD, Liu XF, Kumar BVKV, Wang JS. Confidence regularized self-training. In: Proc. of the 2019 IEEE/CVF Int’l Conf. on
                     Computer Vision. Seoul: IEEE, 2019. 5981–5990. [doi: 10.1109/iccv.2019.00608]
                 [53]  Wei  C,  Sohn  K,  Mellina  C,  Yuille  A,  Yang  F.  CReST:  A  class-rebalancing  self-training  framework  for  imbalanced  semi-supervised
                     learning. In: Proc. of the 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 10852–10861. [doi:
                     10.1109/cvpr46437.2021.01071]
                 [54]  Chen H, Fan Y, Wang YD, Wang JD, Schiele B, Xie X, Savvides M, Raj B. An embarrassingly simple baseline for imbalanced semi-
                     supervised learning. arXiv:2211.11086, 2022.
                 [55]  Xu Y, Shang L, Ye JX, Qian Q, Li YF, Sun BG, Li H, Jin R. Dash: Semi-supervised learning with dynamic thresholding. In: Proc. of the
                     38th Int’l Conf. on Machine Learning. ICML, 2021. 11525–11536.
                 [56]  Zhang  BW,  Wang  YD,  Hou  WX,  Wu  H,  Wang  JD,  Okumura  M,  Shinozaki  T.  FlexMatch:  Boosting  semi-supervised  learning  with
                     curriculum pseudo labeling. In: Proc. of the 34th Annual Conf. on Neural Information Processing Systems. 2021. 18408–18419.
                 [57]  Mills  C,  Escobar-Avila  J,  Bhattacharya  A,  Kondyukov  G,  Chakraborty  S,  Haiduc  S.  Tracing  with  less  data:  Active  learning  for
                     classification-based traceability link recovery. In: Proc. of the 2019 IEEE Int’l Conf. on Software Maintenance and Evolution. Cleveland:
                     IEEE, 2019. 103–113. [doi: 10.1109/icsme.2019.00020]
                 [58]  Du  TB,  Shen  GH,  Huang  ZQ,  Yu  YS,  Wu  DX.  Automatic  traceability  link  recovery  via  active  learning.  Frontiers  of  Information
                     Technology & Electronic Engineering, 2020, 21(8): 1217–1225. [doi: 10.1631/fitee.1900222]
                 [59]  Tharwat A, Schenck W. A survey on active learning: State-of-the-art, practical challenges and research directions. Mathematics, 2023,
                     11(4): 820. [doi: 10.3390/math11040820]
                 [60]  Prenner JA, Robbes R. Making the most of small software engineering datasets with modern machine learning. IEEE Trans. on Software
                     Engineering, 2022, 48(12): 5050–5067. [doi: 10.1109/tse.2021.3135465]
                 [61]  Lewis DD, Catlett J. Heterogeneous uncertainty sampling for supervised learning. In: Cohen WW, Hirsh H, eds. Machine Learning: Proc.
                     of the 11th Int’l Conf. New Brunswick: Elsevier, 1994. 148–156. [doi: 10.1016/b978-1-55860-335-6.50026-x]
                 [62]  Scheffer  T,  Decomain  C,  Wrobel  S.  Active  hidden  Markov  models  for  information  extraction.  In:  Proc.  of  the  4th  Int’l  Symp.  on
                     Intelligent Data Analysis. Cascais: Springer, 2001. 309–318. [doi: 10.1007/3-540-44816-0_31]
                 [63]  Kothawade  S,  Reddy  PK,  Ramakrishnan  G,  Iyer  R.  BASIL:  Balanced  active  semi-supervised  learning  for  class  imbalanced  datasets.
                     arXiv:2203.05651, 2022.
                 [64]  Kothawade S, Ghosh S, Shekhar S, Xiang Y, Iyer R. Talisman: Targeted active learning for object detection with rare classes and slices
                     using submodular mutual information. In: Proc. of the 17th European Conf. on Computer Vision. Tel Aviv: Springer, 2022. 1–16. [doi: 10.
                     1007/978-3-031-19839-7_1]
   42   43   44   45   46   47   48   49   50   51   52