Page 368 - 《软件学报》2025年第5期
P. 368

2268                                                       软件学报  2025  年第  36  卷第  5  期


                  [8]  Cao XY, Fang MH, Liu J, Gong NZ. FLTrust: Byzantine-robust federated learning via trust bootstrapping. arXiv:2012.13995v1, 2020.
                  [9]  Bagdasaryan  E,  Veit  A,  Hua  YQ,  Estrin  D,  Shmatikov  V.  How  to  backdoor  federated  learning.  In:  Proc.  of  the  23rd  Int’l  Conf.  on
                     Artificial Intelligence and Statistics. Palermo: AISTATS, 2020. 2938–2948.
                 [10]  Wang Y, Li GL, Li KY. Survey on contribution evaluation for federated learning. Ruan Jian Xue Bao/Journal of Software, 2023, 34(3):
                     1168–1192 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6786.htm [doi: 10.13328/j.cnki.jos.006786]
                 [11]  Zhao  BW,  Liu  XM,  Chen  WN.  When  crowdsensing  meets  federated  learning:  Privacy-preserving  mobile  crowdsensing  system.
                     arXiv:2102.10109, 2021.
                 [12]  Lv HT, Zheng ZZ, Luo T, Wu F, Tang SJ, Hua LF, Jia RF, Lv CF. Data-free evaluation of user contributions in federated learning. In:
                     Proc. of the 19th Int’l Symp. on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). Philadelphia: IEEE,
                     2021. 1–8. [doi: 10.23919/WiOpt52861.2021.9589136]
                 [13]  Shapley LS. A value for n-person games. In: Kuhn HW, Tucker AW, eds. Contributions to the Theory of Games. Princeton: Princeton
                     University Press, 1953. 307–318. [doi: 10.1515/9781400881970-018]
                 [14]  Wang TH, Rausch J, Zhang C, Jia RX, Song D. A principled approach to data valuation for federated learning. In: Yang Q, Fan LX, Yu
                     H, eds. Federated Learning: Privacy and Incentive. Cham: Springer, 2020. 153–167. [doi: 10.1007/978-3-030-63076-8_11]
                 [15]  Ghorbani  A,  Zou  JY.  Data  Shapley:  Equitable  valuation  of  data  for  machine  learning.  In:  Proc.  of  the  36th  Int’l  Conf.  on  Machine
                     Learning. Long Beach: ICML, 2019. 2242–2251.
                 [16]  Liu ZL, Chen YY, Yu H, Liu Y, Cui LZ. GTG-Shapley: Efficient and accurate participant contribution evaluation in federated learning.
                     ACM Trans. on Intelligent Systems and Technology, 2022, 13(4): 60. [doi: 10.1145/3501811]
                 [17]  Nasr M, Shokri R, Houmansadr A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks
                     against centralized and federated learning. In: Proc. of the 2019 IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2019.
                     739–753. [doi: 10.1109/SP.2019.00065]
                 [18]  Hitaj B, Ateniese G, Perez-Cruz F. Deep models under the GAN: Information leakage from collaborative deep learning. In: Proc. of the
                     2017 ACM SIGSAC Conf. on Computer and Communications Security. Dallas: ACM, 2017. 603–618. [doi: 10.1145/3133956.3134012]
                 [19]  Cao XY, Gong NZ. MPAF: Model poisoning attacks to federated learning based on fake clients. In: Proc. of the 2022 IEEE/CVF Conf.
                     on Computer Vision and Pattern Recognition (CVPR) Workshops. New Orleans: IEEE, 2022. 3395–3403. [doi: 10.1109/CVPRW56347.
                     2022.00383]
                 [20]  Lyu LJ, Yu H, Ma XJ, Chen C, Sun LC, Zhao J, Yang Q, Yu PS. Privacy and robustness in federated learning: Attacks and defenses.
                     IEEE Trans. on Neural Networks and Learning Systems, 2024, 35(7): 8726–8746. [doi: 10.1109/TNNLS.2022.3216981]
                 [21]  Gu YH, Bai YB. Survey on security and privacy of federated learning models. Ruan Jian Xue Bao/Journal of Software, 2023, 34(6):
                     2833–2864 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6658.htm [doi: 10.13328/j.cnki.jos.006658]
                 [22]  Tang LT, Chen ZN, Zhang LF, Wu D. Research progress of privacy issues in federated learning. Ruan Jian Xue Bao/Journal of Software,
                     2023, 34(1): 197–229 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6411.htm [doi: 10.13328/j.cnki.jos.006411]
                 [23]  Liu YX, Chen H, Liu YH, Li CP. Privacy-preserving techniques in federated learning. Ruan Jian Xue Bao/Journal of Software, 2022,
                     33(3): 1057–1092 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6446.htm [doi: 10.13328/j.cnki.jos.006446]
                 [24]  Tan ZW, Zhang LF. Survey on privacy preserving techniques for machine learning. Ruan Jian Xue Bao/Journal of Software, 2020, 31(7):
                     2127–2156 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6052.htm [doi: 10.13328/j.cnki.jos.006052]
                 [25]  Wei LF, Chen CC, Zhang L, Li MS, Chen YJ, Wang Q. Security issues and privacy preserving in machine learning. Journal of Computer
                     Research and Development, 2020, 57(10): 2066–2085 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2020.20200426]
                 [26]  Xiao H, Rasul K, Vollgraf R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747,
                     2017.
                 [27]  Krizhevsky A. Learning multiple layers of features from tiny images [MS. Thesis]. Toronto: University of Toronto, 2009. [doi: 10.1.1.222.
                     9220]
                 [28]  Fang  MH,  Cao  XY,  Jia  JY,  Gong  NZ.  Local  model  poisoning  attacks  to  Byzantine-robust  federated  learning.  In:  Proc.  of  the  29th
                     USENIX Security Symp. USENIX, 2020. 1605–1622.
                 [29]  Simonyan  K,  Zisserman  A.  Very  deep  convolutional  networks  for  large-scale  image  recognition.  In:  Proc.  of  the  3rd  Int’l  Conf.  on
                     Learning Representations. San Diego: ICLR, 2015.
                 [30]  Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. In: Proc. of the 2009 IEEE
                     Conf. on Computer Vision and Pattern Recognition. Miami: IEEE, 2009. 248–255. [doi: 10.1109/CVPR.2009.5206848]
   363   364   365   366   367   368   369   370   371   372   373