Page 211 - 《软件学报》2025年第4期
P. 211

孙泽辰 等: 基于可控性解释的混合数据增强框架                                                         1617


                     Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 2020. 7597–7610. [doi: 10.18653/v1/
                     2020.emnlp-main.613]
                  [6]  Tu LF, Lalwani G, Gella S, He H. An empirical study on robustness to spurious correlations using pre-trained language models. Trans. of
                     the Association for Computational Linguistics, 2020, 8: 621–633. [doi: 10.1162/tacl_a_00335]
                  [7]  McCoy RT, Pavlick E, Linzen T. Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference. In: Proc. of
                     the 57th Annual Meeting of the Association for Computational Linguistics. Florence: Association for Computational Linguistics, 2020.
                     3428–3448. [doi: 10.18653/v1/P19-1334]
                  [8]  Gururangan S, Swayamdipta S, Levy O, Schwartz R, Bowman S, Smith NA. Annotation artifacts in natural language inference data. In:
                     Proc. of the 2018 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
                     (Vol. 2: Short Papers). New Orleans: Association for Computational Linguistics, 2018. 107–112. [doi: 10.18653/v1/N18-2017]
                  [9]  Geirhos R, Jacobsen JH, Michaelis C, Zemel R, Brendel W, Bethge M, Wichmann FA. Shortcut learning in deep neural networks. Nature
                     Machine Intelligence, 2020, 2(11): 665–673. [doi: 10.1038/s42256-020-00257-z]
                 [10]  Schwartz R, Stanovsky G. On the limitations of dataset balancing: The lost battle against spurious correlations. In: Proc. of the 2022
                     Findings of the Association for Computational Linguistics. Seattle: Association for Computational Linguistics, 2022. 2182–2194. [doi: 10.
                     18653/v1/2022.findings-naacl.168]
                 [11]  Du MN, He FX, Zou N, Tao DC, Hu X. Shortcut learning of large language models in natural language understanding. Communications
                     of the ACM, 2023, 67(1): 110–120. [doi: 10.1145/3596490]
                 [12]  Touvron H, Lavril T, Izacard G, Martinet X, Lachaux MA, Lacroix T, Rozière B, Goyal N, Hambro E, Azhar F, Rodriguez A, Joulin A,
                     Grave E, Lample G. LLaMA: Open and efficient foundation language models. arXiv:2302.13971, 2023.
                 [13]  Touvron H, Martin L, Stone K, et al. LLaMA 2: Open foundation and fine-tuned chat models. arXiv:2307.09288, 2023.
                 [14]  Chung  HW,  Hou  L,  Longpre  S,  et  al.  Scaling  instruction-finetuned  language  models.  Journal  of  Machine  Learning  Research,  2024,
                     25(70): 1–53.
                 [15]  Ouyang L, Wu J, Jiang X, Almeida D, Wainwright CL, Mishkin P, Zhang C, Agarwal S, Slama K, Ray A, Schulman J, Hilton J, Kelton F,
                     Miller L, Simens M, Askell A, Welinder P, Christiano P, Leike J, Lowe R. Training language models to follow instructions with human
                     feedback.  In:  Proc.  of  the  36th  Int’l  Conf.  on  Neural  Information  Processing  Systems.  New  Orleans:  Curran  Associates  Inc.,  2022.
                     27730–27744.
                 [16]  Niven T, Kao HY. Probing neural network comprehension of natural language arguments. In: Proc. of the 57th Annual Meeting of the
                     Association for Computational Linguistics. Florence: Association for Computational Linguistics, 2019. 4658–4664. [doi: 10.18653/v1/
                     P19-1459]
                 [17]  Lai YX, Zhang C, Feng YS, Huang QZ, Zhao DY. Why machine reading comprehension models learn shortcuts? In: Proc. of the 2021
                     Findings  of  the  Association  for  Computational  Linguistics:  ACL-IJCNLP  2021.  Association  for  Computational  Linguistics,  2021.
                     989–1002. [doi: 10.18653/v1/2021.findings-acl.85]
                 [18]  Liu F, Avci B. Incorporating priors with feature attribution on text classification. In: Proc. of the 57th Annual Meeting of the Association
                     for Computational Linguistics. Florence: Association for Computational Linguistics, 2019. 6274–6283. [doi: 10.18653/v1/P19-1631]
                 [19]  Han XC, Tsvetkov Y. Influence tuning: Demoting spurious correlations via instance attribution and instance-driven updates. In: Proc. of
                     the  2021  Findings  of  the  Association  for  Computational  Linguistics:  EMNLP  2021.  Punta  Cana:  Association  for  Computational
                     Linguistics, 2021. 4398–4409. [doi: 10.18653/v1/2021.findings-emnlp.374]
                 [20]  Clark C, Yatskar M, Zettlemoyer L. Don’t take the easy way out: Ensemble based methods for avoiding known dataset biases. In: Proc. of
                     the 2019 Conf. on Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural Language Processing
                     (EMNLP-IJCNLP). Hong Kong: Association for Computational Linguistics, 2019. 4069–4082. [doi: 10.18653/v1/D19-1418]
                 [21]  He H, Zha S, Wang HH. Unlearn dataset bias in natural language inference by fitting the residual. In: Proc. of the 2nd Workshop on Deep
                     Learning  Approaches  for  Low-resource  Natural  Language  Processing.  Hong  Kong:  Association  for  Computational  Linguistics,  2019.
                     132–142. [doi: 10.18653/v1/D19-6115]
                 [22]  Sanh  V,  Wolf  T,  Belinkov  Y,  Rush  AM.  Learning  from  others’  mistakes:  Avoiding  dataset  biases  without  modeling  them.  arXiv:
                     2012.01300, 2020.
                 [23]  Zhang DC, Zhang K, Wu L, Wang M. Causal-based debiased reasoning method for grounded textual entailment. Journal of Computer
                     Research and Development, 2023, 60(8): 1768–1779 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.202330248]
                 [24]  Nam J, Cha H, Ahn S, Lee J, Shin J. Learning from failure: Training debiased classifier from biased classifier. In: Proc. of the 34th Int’l
                     Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020. 20673–20684.
                 [25]  Liu EZ, Haghgoo B, Chen AS, Raghunathan A, Koh PW, Sagawa S, Liang P, Finn C. Just train twice: Improving group robustness
   206   207   208   209   210   211   212   213   214   215   216