Page 151 - 《软件学报》2025年第4期
P. 151

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 2025,36(4):1557−1569 [doi: 10.13328/j.cnki.jos.007189] [CSTR: 32375.14.jos.007189]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                              *
                 基于槽依赖建模的跨领域槽填充方法

                 王    泽,    周夏冰,    鞠    鑫,    王中卿,    周国栋


                 (苏州大学 计算机科学与技术学院, 江苏 苏州 215006)
                 通信作者: 周夏冰, E-mail: zhouxiabing@suda.edu.cn

                 摘 要: 作为任务型对话系统的一个核心部分, 槽填充任务通过识别话语中存在的特定槽实体来服务于后续的下
                 游任务. 但是, 针对一个特定领域, 需要大量有标记的数据作为支撑, 收集成本较高. 在此背景下, 跨领域槽填充任
                 务出现, 该任务通过迁移学习的方式高效地解决了数据稀缺问题. 已有的跨领域槽填充方法都忽视了槽类型之间
                 在话语中存在的依赖, 导致现有的模型在迁移到新领域时性能欠佳. 为了弥补这个缺陷, 提出基于槽依赖建模的跨
                 领域槽填充方法. 基于生成式预训练模型的提示学习方法, 设计一种融入槽依赖信息的提示模板, 该模板建立了不

                 同槽类型之间的隐式依赖关系, 充分挖掘预训练模型的实体预测性能. 此外, 为了进一步提高槽类型和槽实体与话
                 语文本之间的语义依赖, 增加了话语填充子任务, 通过反向填充的方式增强话语与槽实体的内在联系. 通过对多个
                 领域的迁移实验表明, 所提模型在零样本和少样本的设置上取得了较大的性能提升. 此外, 对模型中的主要结构进
                 行了详细地分析和消融实验.
                 关键词: 槽填充; 对话系统; 提示学习
                 中图法分类号: TP18

                 中文引用格式: 王泽, 周夏冰, 鞠鑫, 王中卿, 周国栋. 基于槽依赖建模的跨领域槽填充方法. 软件学报, 2025, 36(4): 1557–1569.
                 http://www.jos.org.cn/1000-9825/7189.htm
                 英文引用格式: Wang Z, Zhou XB, Ju X, Wang ZQ, Zhou GD. Slot Dependency Modeling for Cross-domain Slot Filling. Ruan Jian
                 Xue Bao/Journal of Software, 2025, 36(4): 1557–1569 (in Chinese). http://www.jos.org.cn/1000-9825/7189.htm

                 Slot Dependency Modeling for Cross-domain Slot Filling
                 WANG Ze, ZHOU Xia-Bing, JU Xin, WANG Zhong-Qing, ZHOU Guo-Dong
                 (School of Computer Science and Technology, Soochow University, Suzhou 215006, China)
                 Abstract:  This  study  considers  slot  filling  as  a  crucial  component  of  task-oriented  dialogue  systems,  which  serves  downstream  tasks  by
                 identifying specific slot entities in utterances. However, in a specific domain, it necessitates a large amount of labeled data, which is costly
                 to  collect.  In  this  context,  cross-domain  slot  filling  emerges  and  efficiently  addresses  the  issue  of  data  scarcity  through  transfer  learning.
                 However,  existing  methods  overlook  the  dependencies  between  slot  types  in  utterances,  leading  to  the  suboptimal  performance  of  existing
                 models  when  transferring  to  new  domains.  To  address  this  issue,  a  cross-domain  slot  filling  method  based  on  slot  dependency  modeling  is
                 proposed in this study. Leveraging the prompt learning approach based on generative pre-trained models, a prompt template integrating slot
                 dependency  information  is  designed,  establishing  implicit  dependency  relationships  between  different  slot  types  and  fully  exploiting  the
                 predictive performance of slot entities in the pre-trained model. Furthermore, to enhance the semantic dependencies between slot types, slot
                 entities,  and  utterance  texts,  discourse  filling  subtask  is  introduced  in  this  study  to  strengthen  the  inherent  connections  between  utterances
                 and slot entities through reverse filling. Transfer experiments across multiple domains demonstrate significant performance improvements in
                 zero-shot  and  few-shot  settings  achieved  by  the  proposed  model.  Additionally,  a  detailed  analysis  of  the  main  structures  in  the  model  and
                 ablation experiments are conducted in this study to further validate the necessity of each part of the model.
                 Key words:  slot filling; dialogue system; prompt learning


                 *    基金项目: 国家自然科学基金  (62176174, 61936010)
                  收稿时间: 2023-11-09; 修改时间: 2024-01-08, 2024-03-13; 采用时间: 2024-03-22; jos 在线出版时间: 2024-06-14
                  CNKI 网络首发时间: 2024-06-21
   146   147   148   149   150   151   152   153   154   155   156