Page 147 - 《软件学报》2025年第4期
P. 147
曹帅 等: 深度学习在基于信息检索的缺陷定位中的应用综述 1553
[26] Mohsen AM, Hassan H, Moawad R, Makady S. A review on software bug localization techniques using a motivational example. Int’l
Journal of Advanced Computer Science and Applications (IJACSA), 2022, 13(2): 251–261. [doi: 10.14569/ijacsa.2022.0130231]
[27] Zamfirov F. A literature review on different types of empirically evaluated bug localization approaches. arXiv:2212.11774, 2022.
[28] Huo X, Li M. Enhancing the unified features to locate buggy files by exploiting the sequential nature of source code. In: Proc. of the 26th
Int’l Joint Conf. on Artificial Intelligence. Melbourne: ijcai.org, 2017. 1909–1915. [doi: 10.24963/ijcai.2017/265]
[29] Lam AN, Nguyen AT, Nguyen HA, Nguyen TN. Bug localization with combination of deep learning and information retrieval. In: Proc.
of the 25th IEEE/ACM Int’l Conf. on Program Comprehension. Buenos Aires: IEEE, 2017. 218–229. [doi: 10.1109/icpc.2017.24]
[30] Xiao Y, Keung J, Mi Q, Bennin KE. Improving bug localization with an enhanced convolutional neural network. In: Proc. of the 24th
Asia-Pacific Software Engineering Conf. Nanjing: IEEE, 2017. 338–347. [doi: 10.1109/apsec.2017.40]
[31] Xiao Y, Keung J, Bennin KE, Mi Q. Machine translation-based bug localization technique for bridging lexical gap. Information and
Software Technology, 2018, 99: 58–61. [doi: 10.1016/j.infsof.2018.03.003]
[32] Loyola P, Gajananan K, Satoh F. Bug localization by learning to rank and represent bug inducing changes. In: Proc. of the 27th ACM
Int’l Conf. on Information and Knowledge Management. Torino: ACM, 2018. 657–665. [doi: 10.1145/3269206.3271811]
[33] Xiao Y, Keung J. Improving bug localization with character-level convolutional neural network and recurrent neural network. In: Proc. of
the 25th Asia-Pacific Software Engineering Conf. Nara: IEEE, 2018. 703–704. [doi: 10.1109/apsec.2018.00097]
2021, 35(4): 1369–1392. [doi: 10.1007/s10618-021-00755-7]
[34] Huo X, Thung F, Li M, Lo D, Shi ST. Deep transfer bug localization. IEEE Trans. on Software Engineering, 2021, 47(7): 1368–1380.
[doi: 10.1109/TSE.2019.2920771]
[35] Liang HL, Sun L, Wang ML, Yang YX. Deep learning with customized abstract syntax tree for bug localization. IEEE Access, 2019, 7:
116309–116320. [doi: 10.1109/access.2019.2936948]
[36] Xiao Y, Keung J, Bennin KE, Mi Q. Improving bug localization with word embedding and enhanced convolutional neural networks.
Information and Software Technology, 2019, 105: 17–29. [doi: 10.1016/j.infsof.2018.08.002]
[37] Liu GL, Lu Y, Shi K, Chang JF, Wei X. Convolutional neural networks-based locating relevant buggy code files for bug reports affected
by data imbalance. IEEE Access, 2019, 7: 131304–131316. [doi: 10.1109/access.2019.2940557]
[38] Polisetty S, Miranskyy A, Başar A. On usefulness of the deep-learning-based bug localization models to practitioners. In: Proc. of the
15th Int’l Conf. on Predictive Models and Data Analytics in Software Engineering. Recife: ACM, 2019. 16–25. [doi: 10.1145/3345629.
3345632]
[39] Huo X, Li M, Zhou ZH. Control flow graph embedding based on multi-instance decomposition for bug localization. In: Proc. of the 34th
AAAI Conf. on Artificial Intelligence. New York: AAAI, 2020. 4223–4230. [doi: 10.1609/aaai.v34i04.5844]
[40] Zhu ZY, Li Y, Tong HH, Wang Y. CooBa: Cross-project bug localization via adversarial transfer learning. In: Proc. of the 29th Int’l Joint
Conf. on Artificial Intelligence. Yokohama: ijcai.org, 2020. 3565–3571. [doi: 10.24963/ijcai.2020/493]
[41] Wang B, Xu L, Yan M, Liu C, Liu L. Multi-dimension convolutional neural network for bug localization. IEEE Trans. on Services
Computing, 2022, 15(3): 1649–1663. [doi: 10.1109/tsc.2020.3006214]
[42] Jiang B, Liu PF, Xu J. A deep learning approach to locate buggy files. In: Proc. of the 11th IEEE Int’l Conf. on Dependable Systems,
Services and Technologies. Kyiv: IEEE, 2020. 219–223. [doi: 10.1109/dessert50317.2020.9125003]
[43] Zhang JL, Xie R, Ye W, Zhang YH, Zhang SK. Exploiting code knowledge graph for bug localization via bi-directional attention. In:
Proc. of the 28th Int’l Conf. on Program Comprehension. Seoul: ACM, 2020. 219–229. [doi: 10.1145/3387904.3389281]
[44] Yang G, Min K, Lee B. Applying deep learning algorithm to automatic bug localization and repair. In: Proc. of the 35th Annual ACM
Symp. on Applied Computing. Brno: ACM, 2020. 1634–1641. [doi: 10.1145/3341105.3374005]
[45] Yuan W, Qi BH, Sun HL, Liu XD. Dependloc: A dependency-based framework for bug localization. In: Proc. of the 27th Asia-Pacific
Software Engineering Conf. Singapore: IEEE, 2020. 61–70. [doi: 10.1109/apsec51365.2020.00014]
[46] Sangle S, Muvva S, Chimalakonda S, Ponnalagu K, Venkoparao VG. DRAST —A deep learning and AST based approach for bug
localization. arXiv:2011.03449, 2020.
[47] Zhu ZY, Li Y, Wang Y, Wang YJ, Tong HH. A deep multimodal model for bug localization. Data Mining and Knowledge Discovery,
[48] Yang SL, Cao JM, Zeng HS, Shen BJ, Zhong H. Locating faulty methods with a mixed RNN and attention model. In: Proc. of the 29th
IEEE/ACM Int’l Conf. on Program Comprehension. Madrid: IEEE, 2021. 207–218. [doi: 10.1109/icpc52881.2021.00028]
[49] Qi BH, Sun HL, Yuan W, Zhang HY, Meng XX. DreamLoc: A deep relevance matching-based framework for bug localization. IEEE
Trans. on Reliability, 2022, 71(1): 235–249. [doi: 10.1109/tr.2021.3104728]
[50] Anh BTM, Luyen NV. An imbalanced deep learning model for bug localization. In: Proc. of the 28th Asia-Pacific Software Engineering
Conf. Workshops. IEEE, 2021. 32–40. [doi: 10.1109/apsecw53869.2021.00017]