Page 149 - 《软件学报》2025年第4期
P. 149

曹帅 等: 深度学习在基于信息检索的缺陷定位中的应用综述                                                    1555


                     and the 13th European Conf. on Foundations of Software Engineering. Szeged: ACM, 2011. 322–331. [doi: 10.1145/2025113.2025157]
                 [74]  Voorhees EM. The TREC-8 question answering track report. In: Proc. of the 2nd LREC. 2000. 77–82.
                 [75]  Manning CD, Raghavan P, Schütze H. Introduction to Information Retrieval. Cambridge: Cambridge University Press, 2008.
                 [76]  Kochhar PS, Xia X, Lo D, LI SP, Claims A. Practitioners’ expectations on automated fault localization. In: Proc. of the 25th Int’l Symp.
                     on Software Testing and Analysis. Saarbrücken: ACM, 2016. 165–176. [doi: 10.1145/2931037.2931051]
                 [77]  Youm  KC,  Ahn  J,  Lee  E.  Improved  bug  localization  based  on  code  change  histories  and  bug  reports.  Information  and  Software
                     Technology, 2017, 82: 177–192. [doi: 10.1016/j.infsof.2016.11.002]
                 [78]  Rahman S, Rahman MM, Sakib K. A statement level bug localization technique using statement dependency graph. In: Proc. of the 12th
                     Int’l  Conf.  on  Evaluation  of  Novel  Approaches  to  Software  Engineering.  Porto:  SciTePress,  2017.  171–178.  [doi:  10.5220/
                     0006261901710178]
                 [79]  Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504–507. [doi: 10.
                     1126/science.1127647]
                 [80]  Kim  D,  Tao  YD,  Kim  S,  Zeller  A.  Where  should  we  fix  this  bug?  A  two-phase  recommendation  model.  IEEE  Trans.  on  Software
                     Engineering, 2013, 39(11): 1597–1610. [doi: 10.1109/tse.2013.24]
                 [81]  Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. In: Proc. of the 20th ACM SIGKDD Int’l Conf. on

                     Knowledge Discovery and Data Mining. New York: ACM, 2014. 701–710. [doi: 10.1145/2623330.2623732]
                 [82]  Ye X, Bunescu R, Liu C. Learning to rank relevant files for bug reports using domain knowledge. In: Proc. of the 22nd ACM SIGSOFT
                     Int’l Symp. on Foundations of Software Engineering. ACM, 2014. 689–699. [doi: 10.1145/2635868.2635874]
                 [83]  Lin JF, Liu YL, Zeng QK, Jiang M, Cleland-Huang J. Traceability transformed: Generating more accurate links with pre-trained BERT
                     models. In: Proc. of the 43rd IEEE/ACM Int’l Conf. on Software Engineering. Madrid: IEEE, 2021. 324–335. [doi: 10.1109/ICSE43902.
                     2021.00040]
                 [84]  Fejzer M, Narębski J, Przymus P, Stencel K. Tracking buggy files: New efficient adaptive bug localization algorithm. IEEE Trans. on
                     Software Engineering, 2022, 48(7): 2557–2569. [doi: 10.1109/tse.2021.3064447]
                 [85]  Ye X, Bunescu R, Liu C. Mapping bug reports to relevant files: A ranking model, a fine-grained benchmark, and feature evaluation. IEEE
                     Trans. on Software Engineering, 2016, 42(4): 379–402. [doi: 10.1109/tse.2015.2479232]
                 [86]  Gay G, Haiduc S, Marcus A, Menzies T. On the use of relevance feedback in IR-based concept location. In: Proc. of Int’l Conf. on
                     Software Maintenance. 2009. 351–360. [doi: 10.1109/icsm.2009.5306315]
                 [87]  Turhan B, Menzies T, Bener AB, Di Stefano J. On the relative value of cross-company and within-company data for defect prediction.
                     Empirical Software Engineering, 2009, 14(5): 540–578. [doi: 10.1007/s10664-008-9103-7]
                 [88]  Rao S, Kak A. Retrieval from software libraries for bug localization: A comparative study of generic and composite text models. In: Proc.
                     of the 8th Working Conf. on Mining Software Repositories. Honolulu: ACM, 2011. 43–52. [doi: 10.1145/1985441.1985451]
                 [89]  Nam J, Pan SJ, Kim S. Transfer defect learning. In: Proc. of the 35th Int’l Conf. on Software Engineering. San Francisco: IEEE, 2013.
                     382–391. [doi: 10.1109/ICSE.2013.6606584]
                 [90]  Ye X, Shen H, Ma X, Bunescu R, Liu C. From word embeddings to document similarities for improved information retrieval in software
                     engineering. In: Proc. of the 38th Int’l Conf. on Software Engineering. Austin: ACM, 2016. 404–415. [doi: 10.1145/2884781.2884862]
                 [91]  Zhang  W,  Li  ZQ,  Wang  Q,  Li  J.  FineLocator:  A  novel  approach  to  method-level  fine-grained  bug  localization  by  query  expansion.
                     Information and Software Technology, 2019, 110: 121–135. [doi: 10.1016/j.infsof.2019.03.001]
                 [92]  Rahman MM, Roy CK. Improving IR-based bug localization with context-aware query reformulation. In: Proc. of the 26th ACM Joint
                     Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. Lake Buena: ACM, 2018.
                     621–632. [doi: 10.1145/3236024.3236065]
                 [93]  Donahue J, Anne Hendricks L, Guadarrama S, Rohrbach M, Venugopalan S, Darrell T. Long-term recurrent convolutional networks for
                     visual recognition and description. In: Proc. of the 2015 IEEE Conf. on Computer Vision and Pattern Recognition. Boston: IEEE, 2015.
                     2625–2634. [doi: 10.1109/CVPR.2015.7298878]
                 [94]  Just R, Jalali D, Ernst MD. Defects4J: A database of existing faults to enable controlled testing studies for Java programs. In: Proc. of the
                     2014 Int’l Symp. on Software Testing and Analysis. San Jose: ACM, 2014. 437–440. [doi: 10.1145/2610384.2628055]
                 [95]  Ding YRB, Chakraborty S, Buratti L, Pujar S, Morari A, Kaiser G, Ray B. CONCORD: Clone-aware contrastive learning for source code.
                     In: Proc. of the 32nd ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 26–38. [doi: 10.1145/3597926.
                     3598035]
                 [96]  Zeng C, Yu Y, Li SS, Xia X, Wang ZM, Geng MY, Bai LX, Dong W, Liao XK. DEGRAPHCS: Embedding variable-based flow graph
                     for neural code search. ACM Trans. on Software Engineering and Methodology, 2023, 32(2): 34. [doi: 10.1145/3546066]
   144   145   146   147   148   149   150   151   152   153   154