Page 476 - 《软件学报》2024年第6期
P. 476

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 Journal of Software,2024,35(6):3052−3068 [doi: 10.13328/j.cnki.jos.006921]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                                         *
                 高清几何缓存多尺度特征融合的渲染超分方法

                 张浩南,    过    洁,    覃浩宇,    傅锡豪,    郭延文


                 (计算机软件新技术国家重点实验室         (南京大学), 江苏 南京 210023)
                 通信作者: 过洁, E-mail: guojie@nju.edu.cn

                 摘 要: 人们对图像显示设备高分辨率和逼真视觉感知的需求随着现代信息技术的发展日益增长, 这对计算机软
                 硬件提出了更高要求, 也为渲染技术在性能与工作负载上带来更多挑战. 利用深度神经网络等机器学习技术对渲
                 染图像进行质量改进和性能提升成为了计算机图形学热门的研究方向, 其中通过网络推理将低分辨率图像进行上
                 采样获得更加清晰的高分辨率图像是提升图像生成性能并保证高清细节的一个重要途径. 而渲染引擎在渲染流程
                 中产生的几何缓存       (geometry buffer, G-buffer) 包含较多的语义信息, 能够帮助网络有效地学习场景信息与特征, 从
                 而提升上采样结果的质量. 设计一个基于深度神经网络的低分辨率渲染内容的超分方法. 除了当前帧的颜色图像,
                 其使用高分辨率的几何缓存来辅助计算并重建超分后的内容细节. 所提方法引入一种新的策略来融合高清缓存与
                 低清图像的特征信息, 在特定的融合模块中对不同种特征信息进行多尺度融合. 实验验证所提出的融合策略和模
                 块的有效性, 并且, 在和其他图像超分辨率方法的对比中, 所提方法体现出明显的优势, 尤其是在高清细节保持方面.
                 关键词: 神经网络; 渲染; 图像超分; 几何缓存; 特征融合
                 中图法分类号: TP391


                 中文引用格式: 张浩南, 过洁, 覃浩宇, 傅锡豪, 郭延文. 高清几何缓存多尺度特征融合的渲染超分方法. 软件学报, 2024, 35(6):
                 3052–3068. http://www.jos.org.cn/1000-9825/6921.htm
                 英文引用格式: Zhang HN, Guo J, Qin HY, Fu XH, Guo YW. Super-resolution Method for Rendered Contents by Multi-scale Feature
                 Fusion with High-resolution Geometry Buffers. Ruan Jian Xue Bao/Journal of Software, 2024, 35(6): 3052–3068 (in Chinese). http://
                 www.jos.org.cn/1000-9825/6921.htm

                 Super-resolution Method for Rendered Contents by Multi-scale Feature Fusion with
                 High-resolution Geometry Buffers

                 ZHANG Hao-Nan, GUO Jie, QIN Hao-Yu, FU Xi-Hao, GUO Yan-Wen
                 (State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210023, China)
                 Abstract:  With  the  development  of  modern  information  technology,  people’s  demand  for  high  resolution  and  realistic  visual  perception  of
                 image  display  devices  has  increased,  which  has  put  forward  higher  requirements  for  computer  software  and  hardware  and  brought  many
                 challenges  to  rendering  technology  in  terms  of  performance  and  workload.  Using  machine  learning  technologies  such  as  deep  neural
                 networks  to  improve  the  quality  and  performance  of  rendered  images  has  become  a  popular  research  method  in  computer  graphics,  while
                 upsampling  low-resolution  images  through  network  inference  to  obtain  clearer  high-resolution  images  is  an  important  way  to  improve
                 image  generation  performance  and  ensure  high-resolution  details.  The  geometry  buffers  (G-buffers)  generated  by  the  rendering  engine  in
                 the rendering process contain much semantic information, which help the network learn scene information and features effectively and then
                 improve  the  quality  of  upsampling  results.  In  this  study,  a  super-resolution  method  for  rendered  contents  in  low  resolution  based  on  deep
                 neural  networks  is  designed.  In  addition  to  the  color  image  of  the  current  frame,  the  method  uses  high-resolution  G-buffers  to  assist  in  the
                 calculation  and  reconstruct  the  high-resolution  content  details.  The  method  also  leverages  a  new  strategy  to  fuse  the  features  of  high-
                 resolution  buffers  and  low-resolution  images,  which  implements  a  multi-scale  fusion  of  different  feature  information  in  a  specific  fusion


                 *    基金项目: 国家自然科学基金  (61972194, 62032011); 江苏省自然科学基金  (BK20211147)
                  收稿时间: 2022-08-20; 修改时间: 2022-10-08; 采用时间: 2023-02-15; jos 在线出版时间: 2023-08-09
                  CNKI 网络首发时间: 2023-08-10
   471   472   473   474   475   476   477   478   479   480   481