Page 475 - 《软件学报》2024年第6期
P. 475
胡凯 等: 基于端到端深度神经网络和图搜索的 OCT 图像视网膜层边界分割方法 3051
[45] He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In: Proc. of the 2016 IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016. 770–778. [doi: 10.1109/CVPR.2016.90]
[46] Tian J, Varga B, Tatrai E, Fanni P, Somfai GM, Smiddy WE, Debuc DC. Performance evaluation of automated segmentation software on
optical coherence tomography volume data. Journal of Biophotonics, 2016, 9(5): 478–489. [doi: 10.1002/jbio.201500239]
[47] Chiu SJ, Izatt JA, O’Connell RV, Winter KP, Toth CA, Farsiu S. Validated automatic segmentation of AMD pathology including drusen
and geographic atrophy in SD-OCT images. Investigative Ophthalmology & Visual Science, 2012, 53(1): 53–61. [doi: 10.1167/iovs.11-
7640]
[48] Lee K, Abramoff M, Garvin M, Sonka M. The IOWA reference algorithms. 2014. https://iibi.uiowa.edu/oct-reference
[49] Heidelberg Engineering. SPECTRALIS HRA+OCT user manual software version 6.0. 2015. https://www.heidelbergengineering.com/
[50] Dufour PA, Ceklic L, Abdillahi H, Schroder S, De Dzanet S, Wolf-Schnurrbusch U, Kowal J. Graph-based multi-surface segmentation of
OCT data using trained hard and soft constraints. IEEE Trans. on Medical Imaging, 2013, 32(3): 531–543. [doi: 10.1109/TMI.2012.
2225152]
[51] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proc. of the 2015 IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015. 3431–3440. [doi: 10.1109/CVPR.2015.7298965]
[52] Ma D, Lu DH, Chen S, Heisler M, Dabiri S, Lee S, Lee H, Ding GW, Sarunic MV, Beg MF. LF-UNet—A novel anatomical-aware dual-
branch cascaded deep neural network for segmentation of retinal layers and fluid from optical coherence tomography images.
蒋帅(1999-), 男, 硕士生, 主要研究领域为深度
Computerized Medical Imaging and Graphics, 2021, 94: 101988. [doi: 10.1016/j.compmedimag.2021.101988]
2
[53] Mou L, Zhao YT, Fu HZ, Liu YH, Cheng J, Zheng YL, Su P, Yang JL, Chen L, Frangi AF, Akiba M, Liu J. CS -Net: Deep learning
segmentation of curvilinear structures in medical imaging. Medical Image Analysis, 2021, 67: 101874. [doi: 10.1016/j.media.2020.
101874]
[54] Cazañas-Gordón A, da Silva Cruz LA. Multiscale Attention Gated Network (MAGNet) for retinal layer and macular cystoid edema
segmentation. IEEE Access, 2022, 10: 85905–85917. [doi: 10.1109/ACCESS.2022.3198657]
[55] Song JH, Chen XJ, Zhu QL, Shi F, Xiang DH, Chen ZY, Fan Y, Pan LJ, Zhu WF. Global and local feature reconstruction for medical
image segmentation. IEEE Trans. on Medical Imaging, 2022, 41(9): 2273–2284. [doi: 10.1109/TMI.2022.3162111]
附中文参考文献:
[13] 贺琪欲, 李中梁, 王向朝, 南楠, 卢宇. 基于光学相干层析成像的视网膜图像自动分层方法. 光学学报, 2016, 36(10): 1011003. [doi: 10.
3788/AOS201636.1011003]
[19] 牛四杰, 陈强, 陆圣陶, 沈宏烈. 应用多尺度三维图搜索的SD-OCT图像层分割方法. 计算机科学, 2015, 42(9): 272–277. [doi: 10.
11896/j.issn.1002-137X.2015.9.053]
[28] 殷晓航, 王永才, 李德英. 基于U-Net结构改进的医学影像分割技术综述. 软件学报, 2021, 32(2): 519–550. http://www.jos.org.cn/1000-
9825/6104.htm [doi: 10.13328/j.cnki.jos.006104]
[37] 王丹, 山世光, 张洪明, 曾炜, 陈熙霖. 一种由粗到细的头发分割方法. 软件学报, 2013, 24(10): 2391–2404. http://www.jos.org.cn/1000-
9825/4423.htm [doi: 10.3724/SP.J.1001.2013.04423]
[40] 唐艳红, 陈允照, 刘明迪, 曾亚光, 周月霞. 基于CNN和改进的图搜索分割OCT图像中的视网膜层. 激光与光电子学进展, 2020,
57(24): 241702. [doi: 10.3788/LOP57.241702]
胡凯(1984-), 男, 博士, 教授, 博士生导师, CCF 刘冬(1996-), 女, 硕士生, 主要研究领域为深度
高级会员, 主要研究领域为机器学习, 模式识别, 学习, 医学图像处理.
生物信息学, 医学图像处理.
高协平(1965-), 男, 博士, 教授, 博士生导师,
学习, 医学图像处理. CCF 高级会员, 主要研究领域为小波分析, 神经
网络, 生物信息学, 图像处理, 计算机网络.