Page 474 - 《软件学报》2024年第6期
P. 474
3050 软件学报 2024 年第 35 卷第 6 期
ICETIETR.2018.8529098]
[25] Fang LY, Cunefare D, Wang C, Guymer RH, Li ST, Farsiu S. Automatic segmentation of nine retinal layer boundaries in OCT images of
non-exudative AMD patients using deep learning and graph search. Biomedical Optics Express, 2017, 8(5): 2732–2744. [doi: 10.1364/
BOE.8.002732]
[26] McDonough K, Kolmanovsky I, Glybina IV. A neural network approach to retinal layer boundary identification from optical coherence
tomography images. In: Proc. of the 2015 IEEE Conf. on Computational Intelligence in Bioinformatics and Computational Biology
(CIBCB). Niagara Falls: IEEE, 2015. 1–8. [doi: 10.1109/CIBCB.2015.7300299]
[27] Yang JD, Tao YH, Xu QZ, Zhang YH, Ma X, Yuan ST, Chen Q. Self-supervised sequence recovery for semi-supervised retinal layer
segmentation. IEEE Journal of Biomedical and Health Informatics, 2022, 26(8): 3872–3883. [doi: 10.1109/JBHI.2022.3166778]
[28] Yin XH, Wang YC, Li DY. Suvery of medical image segmentation technology based on U-Net structure improvement. Ruan Jian Xue
Bao/Journal of Software, 2021, 32(2): 519−550 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6104.htm [doi: 10.
13328/j.cnki.jos.006104]
[29] Hamwood J, Alonso-Caneiro D, Read SA, Vincent SJ, Collins MJ. Effect of patch size and network architecture on a convolutional neural
network approach for automatic segmentation of OCT retinal layers. Biomedical Optics Express, 2018, 9(7): 3049–3066. [doi: 10.1364/
BOE.9.003049]
[30] Hassan T, Usman A, Akram MU, Masood MF, Yasin U. Deep learning based automated extraction of intra-retinal layers for analyzing
retinal abnormalities. In: Proc. of the 20th IEEE Int’l Conf. on e-Health Networking, Applications and Services (Healthcom). Ostrava:
IEEE, 2018. 1–5. [doi: 10.1109/HealthCom.2018.8531198]
[31] Liu YY, Chen M, Ishikawa H, Wollstein G, Schuman JS, Rehg JM. Automated macular pathology diagnosis in retinal OCT images using
multi-scale spatial pyramid and local binary patterns in texture and shape encoding. Medical Image Analysis, 2011, 15(5): 748–759. [doi:
10.1016/j.media.2011.06.005]
[32] Loo J, Fang LY, Cunefare D, Jaffe GJ, Farsiu S. Deep longitudinal transfer learning-based automatic segmentation of photoreceptor
ellipsoid zone defects on optical coherence tomography images of macular telangiectasia type 2. Biomedical Optics Express, 2018, 9(6):
2681–2698. [doi: 10.1364/BOE.9.002681]
[33] Pekala M, Joshi N, Liu TYA, Bressler NM, DeBuc DC, Burlina P. Deep learning based retinal OCT segmentation. Computers in Biology
and Medicine, 2019, 114: 103445. [doi: 10.1016/j.compbiomed.2019.103445]
[34] Kepp T, Ehrhardt J, Heinrich MP, Hüttmann G, Handels H. Topology-preserving shape-based regression of retinal layers in oct image
data using convolutional neural networks. In: Proc. of the 16th IEEE Int’l Symp. on Biomedical Imaging (ISBI 2019). Venice: IEEE,
2019. 1437–1440. [doi: 10.1109/ISBI.2019.8759261]
[35] Wei H, Peng P. The segmentation of retinal layer and fluid in SD-OCT images using mutex Dice loss based fully convolutional networks.
IEEE Access, 2020, 8: 60929–60939. [doi: 10.1109/ACCESS.2020.2983818]
[36] Wang B, Wei W, Qiu S, Wang SP, Li D, He HG. Boundary aware U-Net for retinal layers segmentation in optical coherence tomography
images. IEEE Journal of Biomedical and Health Informatics, 2021, 25(8): 3029–3040. [doi: 10.1109/JBHI.2021.3066208]
[37] Wang D, Shan SG, Zhang HM, Zeng W, Chen XL. Coarse-to-fine hair segmentation method. Ruan Jian Xue Bao/Journal of Software,
2013, 24(10): 2391–2404 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4423.htm [doi: 10.3724/SP.J.1001.2013.
04423]
[38] Kugelman J, Alonso-Caneiro D, Read SA, Vincent SJ, Collins MJ. Automatic segmentation of OCT retinal boundaries using recurrent
neural networks and graph search. Biomedical Optics Express, 2018, 9(11): 5759–5777. [doi: 10.1364/BOE.9.005759]
[39] Hu K, Shen BW, Zhang Y, Cao CH, Xiao F, Gao XP. Automatic segmentation of retinal layer boundaries in OCT images using
multiscale convolutional neural network and graph search. Neurocomputing, 2019, 365: 302–313. [doi: 10.1016/j.neucom.2019.07.079]
[40] Tang YH, Chen YZ, Liu MD, Zeng YG, Zhou YX. Segmentation of retinal layers in OCT images based on CNN and improved graph
search. Laser & Optoelectronics Progress, 2020, 57(24): 241702 (in Chinese with English abstract). [doi: 10.3788/LOP57.241702]
[41] Ben-Cohen A, Mark D, Kovler I, Zur D, Barak A, Iglicki M, Soferman R. Retinal layers segmentation using fully convolutional network
in OCT images. 2017. https://www.rsipvision.com/wp-content/uploads/2017/06/Retinal-Layers-Segmentation.pdf
[42] Mishra Z, Ganegoda A, Selicha J, Wang ZY, Sadda SR, Hu ZH. Automated retinal layer segmentation using graph-based algorithm
incorporating deep-learning-derived information. Scientific Reports, 2020, 10(1): 9541. [doi: 10.1038/s41598-020-66355-5]
[43] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Proc. of the 18th Int’l Conf. on
Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234–241. [doi: 10.1007/978-3-319-24574-4_28]
[44] Sola J, Sevilla J. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE
Trans. on Nuclear Science, 1997, 44(3): 1464–1468. [doi: 10.1109/23.589532]