Page 474 - 《软件学报》2024年第6期
P. 474

3050                                                       软件学报  2024  年第  35  卷第  6  期


                     ICETIETR.2018.8529098]
                 [25]  Fang LY, Cunefare D, Wang C, Guymer RH, Li ST, Farsiu S. Automatic segmentation of nine retinal layer boundaries in OCT images of
                     non-exudative AMD patients using deep learning and graph search. Biomedical Optics Express, 2017, 8(5): 2732–2744. [doi: 10.1364/
                     BOE.8.002732]
                 [26]  McDonough K, Kolmanovsky I, Glybina IV. A neural network approach to retinal layer boundary identification from optical coherence
                     tomography  images.  In:  Proc.  of  the  2015  IEEE  Conf.  on  Computational  Intelligence  in  Bioinformatics  and  Computational  Biology
                     (CIBCB). Niagara Falls: IEEE, 2015. 1–8. [doi: 10.1109/CIBCB.2015.7300299]
                 [27]  Yang JD, Tao YH, Xu QZ, Zhang YH, Ma X, Yuan ST, Chen Q. Self-supervised sequence recovery for semi-supervised retinal layer
                     segmentation. IEEE Journal of Biomedical and Health Informatics, 2022, 26(8): 3872–3883. [doi: 10.1109/JBHI.2022.3166778]
                 [28]  Yin XH, Wang YC, Li DY. Suvery of medical image segmentation technology based on U-Net structure improvement. Ruan Jian Xue
                     Bao/Journal of Software, 2021, 32(2): 519−550 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6104.htm [doi: 10.
                     13328/j.cnki.jos.006104]
                 [29]  Hamwood J, Alonso-Caneiro D, Read SA, Vincent SJ, Collins MJ. Effect of patch size and network architecture on a convolutional neural
                     network approach for automatic segmentation of OCT retinal layers. Biomedical Optics Express, 2018, 9(7): 3049–3066. [doi: 10.1364/
                     BOE.9.003049]
                 [30]  Hassan T, Usman A, Akram MU, Masood MF, Yasin U. Deep learning based automated extraction of intra-retinal layers for analyzing
                     retinal abnormalities. In: Proc. of the 20th IEEE Int’l Conf. on e-Health Networking, Applications and Services (Healthcom). Ostrava:
                     IEEE, 2018. 1–5. [doi: 10.1109/HealthCom.2018.8531198]
                 [31]  Liu YY, Chen M, Ishikawa H, Wollstein G, Schuman JS, Rehg JM. Automated macular pathology diagnosis in retinal OCT images using
                     multi-scale spatial pyramid and local binary patterns in texture and shape encoding. Medical Image Analysis, 2011, 15(5): 748–759. [doi:
                     10.1016/j.media.2011.06.005]
                 [32]  Loo  J,  Fang  LY,  Cunefare  D,  Jaffe  GJ,  Farsiu  S.  Deep  longitudinal  transfer  learning-based  automatic  segmentation  of  photoreceptor
                     ellipsoid zone defects on optical coherence tomography images of macular telangiectasia type 2. Biomedical Optics Express, 2018, 9(6):
                     2681–2698. [doi: 10.1364/BOE.9.002681]
                 [33]  Pekala M, Joshi N, Liu TYA, Bressler NM, DeBuc DC, Burlina P. Deep learning based retinal OCT segmentation. Computers in Biology
                     and Medicine, 2019, 114: 103445. [doi: 10.1016/j.compbiomed.2019.103445]
                 [34]  Kepp T, Ehrhardt J, Heinrich MP, Hüttmann G, Handels H. Topology-preserving shape-based regression of retinal layers in oct image
                     data using convolutional neural networks. In: Proc. of the 16th IEEE Int’l Symp. on Biomedical Imaging (ISBI 2019). Venice: IEEE,
                     2019. 1437–1440. [doi: 10.1109/ISBI.2019.8759261]
                 [35]  Wei H, Peng P. The segmentation of retinal layer and fluid in SD-OCT images using mutex Dice loss based fully convolutional networks.
                     IEEE Access, 2020, 8: 60929–60939. [doi: 10.1109/ACCESS.2020.2983818]
                 [36]  Wang B, Wei W, Qiu S, Wang SP, Li D, He HG. Boundary aware U-Net for retinal layers segmentation in optical coherence tomography
                     images. IEEE Journal of Biomedical and Health Informatics, 2021, 25(8): 3029–3040. [doi: 10.1109/JBHI.2021.3066208]
                 [37]  Wang D, Shan SG, Zhang HM, Zeng W, Chen XL. Coarse-to-fine hair segmentation method. Ruan Jian Xue Bao/Journal of Software,
                     2013, 24(10): 2391–2404 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4423.htm [doi: 10.3724/SP.J.1001.2013.
                     04423]
                 [38]  Kugelman J, Alonso-Caneiro D, Read SA, Vincent SJ, Collins MJ. Automatic segmentation of OCT retinal boundaries using recurrent
                     neural networks and graph search. Biomedical Optics Express, 2018, 9(11): 5759–5777. [doi: 10.1364/BOE.9.005759]
                 [39]  Hu  K,  Shen  BW,  Zhang  Y,  Cao  CH,  Xiao  F,  Gao  XP.  Automatic  segmentation  of  retinal  layer  boundaries  in  OCT  images  using
                     multiscale convolutional neural network and graph search. Neurocomputing, 2019, 365: 302–313. [doi: 10.1016/j.neucom.2019.07.079]
                 [40]  Tang YH, Chen YZ, Liu MD, Zeng YG, Zhou YX. Segmentation of retinal layers in OCT images based on CNN and improved graph
                     search. Laser & Optoelectronics Progress, 2020, 57(24): 241702 (in  Chinese  with  English  abstract). [doi: 10.3788/LOP57.241702]
                 [41]  Ben-Cohen A, Mark D, Kovler I, Zur D, Barak A, Iglicki M, Soferman R. Retinal layers segmentation using fully convolutional network
                     in OCT images. 2017. https://www.rsipvision.com/wp-content/uploads/2017/06/Retinal-Layers-Segmentation.pdf
                 [42]  Mishra Z, Ganegoda A, Selicha J, Wang ZY, Sadda SR, Hu ZH. Automated retinal layer segmentation using graph-based algorithm
                     incorporating deep-learning-derived information. Scientific Reports, 2020, 10(1): 9541. [doi: 10.1038/s41598-020-66355-5]
                 [43]  Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Proc. of the 18th Int’l Conf. on
                     Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234–241. [doi: 10.1007/978-3-319-24574-4_28]
                 [44]  Sola J, Sevilla J. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE
                     Trans. on Nuclear Science, 1997, 44(3): 1464–1468. [doi: 10.1109/23.589532]
   469   470   471   472   473   474   475   476   477   478   479