Page 327 - 《软件学报》2024年第6期
P. 327

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 Journal of Software,2024,35(6):2903−2922 [doi: 10.13328/j.cnki.jos.006920]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                              *
                 特征扩展的随机向量函数链神经网络

                 龙茂森,    王士同


                 (江南大学 人工智能与计算机学院, 江苏 无锡 214122)
                 通信作者: 王士同, E-mail: wxwangst@aliyun.com

                 摘 要: 基于宽度学习的动态模糊推理系统              (broad-learning-based dynamic fuzzy inference system , BL-DFIS) 能自动
                 构建出精简的模糊规则并获得良好的分类性能. 然而, 当遇到大型复杂的数据集时, BL-DFIS                        因会使用较多模糊规
                 则来试图达到令人满意的识别精度, 从而对其可解释性造成了不利影响. 对此, 提出一种兼顾分类性能和可解释性
                 的模糊神经网络, 将其称为特征扩展的随机向量函数链神经网络                     (FA-RVFLNN). 在该网络中, 一个以原始数据为
                 输入的   RVFLNN  被作为主体结构, BL-DFIS    则用作性能补充, 这意味着        FA-RVFLNN  包含具有性能增强作用的直

                 接链接. 由于主体结构的增强节点使用            Sigmoid  激活函数, 因此, 其推理过程可借助一种模糊逻辑算子              (I-OR) 来解
                 释. 而且, 具有明确含义的原始输入数据也有助于解释主体结构的推理规则. 在直接链接的支撑下, FA-RVFLNN
                 可利用增强节点、特征节点和模糊节点学到更丰富的有用信息. 实验表明: FA-RVFLNN                            既减缓了主体结构
                 RVFLNN  中过多增强节点带来的“规则爆炸”问题, 也提高了性能补充结构                    BL-DFIS  的可解释性  (平均模糊规则数
                 降低了   50%  左右), 在泛化性能和网络规模上仍具有竞争力.
                 关键词: 宽度学习系统; 模糊推理系统; 特征扩展; 随机向量函数链神经网络 (RVFLNN); Sigmoid 激活函数; 可解释
                 中图法分类号: TP18

                 中文引用格式: 龙茂森, 王士同. 特征扩展的随机向量函数链神经网络. 软件学报, 2024, 35(6): 2903–2922. http://www.jos.org.cn/
                 1000-9825/6920.htm
                 英文引用格式: Long MS, Wang ST. Feature-augmented Random Vector Functional-link Neural Network. Ruan Jian Xue Bao/Journal
                 of Software, 2024, 35(6): 2903–2922 (in Chinese). http://www.jos.org.cn/1000-9825/6920.htm

                 Feature-augmented Random Vector Functional-link Neural Network
                 LONG Mao-Sen, WANG Shi-Tong
                 (School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China)
                 Abstract:  The  broad-learning-based  dynamic  fuzzy  inference  system  (BL-DFIS)  can  automatically  assemble  simplified  fuzzy  rules  and
                 achieve  high  accuracy  in  classification  tasks.  However,  when  BL-DFIS  works  on  large  and  complex  datasets,  it  may  generate  too  many
                 fuzzy  rules  to  achieve  satisfactory  identification  accuracy,  which  adversely  affects  its  interpretability.  In  order  to  circumvent  such  a
                 bottleneck,  a  fuzzy  neural  network  called  feature-augmented  random  vector  functional-link  neural  network  (FA-RVFLNN)  is  proposed  in
                 this  study  to  achieve  excellent  trade-off  between  classification  performance  and  interpretability.  In  the  proposed  network,  the  RVFLNN
                 with  original  data  as  input  is  taken  as  its  primary  structure,  and  BL-DFIS  is  taken  as  a  performance  supplement,  which  implies  that  FA-
                 RVFLNN  contains  direct  links  to  boost  the  performance  of  the  whole  system.  The  inference  mechanism  of  the  primary  structure  can  be
                 explained  by  a  fuzzy  logic  operator  (I-OR),  owing  to  the  use  of  Sigmoid  activation  functions  in  the  enhancement  nodes  of  this  structure.
                 Moreover,  the  original  input  data  with  clear  meaning  also  help  to  explain  the  inference  rules  of  the  primary  structure.  With  the  support  of
                 direct  links,  FA-RVFLNN  can  learn  more  useful  information  through  enhancement  nodes,  feature  nodes,  and  fuzzy  nodes.  The
                 experimental  results  indicate  that  FA-RVFLNN  indeed  eases  the  problem  of  rule  explosion  caused  by  excessive  enhancement  nodes  in  the
                 primary  structure  and  improves  the  interpretability  of  BL-DFIS  therein  (The  average  number  of  fuzzy  rules  is  reduced  by  about  50%),  and


                 *    基金项目: 国家重点研发计划  (2022YFE0112400); 国家自然科学基金  (61972181, U20A20228); 江苏省教育厅高校自然科学重点项目
                  (22KJA520009)
                  收稿时间: 2022-07-18; 修改时间: 2022-12-03; 采用时间: 2023-02-11; jos 在线出版时间: 2023-07-26
                  CNKI 网络首发时间: 2023-07-27
   322   323   324   325   326   327   328   329   330   331   332