Page 319 - 《软件学报》2024年第4期
P. 319
张启辰 等: 一种基于窗口机制的口语理解异构图网络 1897
the 57th Annual Meeting of the Association for Computational Linguistics. Florence: Association for Computational Linguistics, 2019.
5467–5471. [doi: 10.18653/v1/P19-1544]
[5] Ramshaw LA, Marcus MP. Text chunking using transformation-based learning. In: Armstrong S, Church K, Isabelle P, Manzi S,
Tzoukermann E, Yarowsky D, eds. Natural Language Processing Using Very Large Corpora. Dordrecht: Springer, 1999. 157–176. [doi:
10.1007/978-94-017-2390-9_10]
[6] Qin LB, Liu TL, Che WX, Kang BB, Zhao SD, Liu T. A co-interactive Transformer for joint slot filling and intent detection. In: Proc. of
the 2021 IEEE Int’l Conf. on Acoustics, Speech and Signal Processing (ICASSP). Toronto: IEEE, 2021. 8193–8197. [doi: 10.1109/
ICASSP39728.2021.9414110]
[7] Zhang LH, Ma DH, Zhang XD, Yan XH, Wang HF. Graph LSTM with context-gated mechanism for spoken language understanding. In:
Proc. of the 34th AAAI Conf. on Artificial Intelligence. New York: AAAI Press, 2020. 9539–9546. [doi: 10.1609/aaai.v34i05.6499]
[8] Wu D, Ding L, Lu F, Xie J. SlotRefine: A fast non-autoregressive model for joint intent detection and slot filling. In: Proc. of the 2020
Conf. on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 2020. 1932–1937.
[doi: 10.18653/v1/2020.emnlp-main.152]
[9] Liu YJ, Meng FD, Zhang JC, Zhou J, Chen YF, Xu JN. CM-Net: A novel collaborative memory network for spoken language
understanding. In: Proc. of the 2019 Conf. on Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural
Language Processing (EMNLP-IJCNLP). Hong Kong: Association for Computational Linguistics, 2019. 1051–1060. [doi: 10.18653/v1/
D19-1097]
[10] Qin LB, Xie TB, Che WX, Liu T. A survey on spoken language understanding: Recent advances and new frontiers. In: Proc. of the 30th
Int’l Joint Conf. on Artificial Intelligence. Montreal: IJCAI.org, 2021. 4577–4584.
[11] Wang X, Ji Hy, Shi C, Wang B, Ye YF, Cui P, Yu PS. Heterogeneous graph attention network. In: Proc. of the 2019 World Wide Web
Conf. San Francisco: Association for Computing Machinery, 2019. 2022–2032. [doi: 10.1145/3308558.3313562]
[12] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proc. of the
31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010
[13] Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. In: Proc. of the 6th Int ’l Conf. on
Learning Representations. Vancouver: ICIR, 2018.
[14] Shi C, Li YT, Zhang JW, Sun YZ, Yu PS. A survey of heterogeneous information network analysis. IEEE Trans. on Knowledge and Data
Engineering, 2017, 29(1): 17–37. [doi: 10.1109/TKDE.2016.2598561]
[15] Hemphill CT, Godfrey JJ, Doddington GR. The ATIS spoken language systems pilot corpus. In: Proc. of the 1990 Workshop on Speech
and Natural Language. Hidden Valley: Association for Computational Linguistics, 1990. 96–101. [doi: 10.3115/116580.116613]
[16] Coucke A, Saade A, Ball A, Bluche T, Caulier A, Leroy D, Doumouro C, Gisselbrecht T, Caltagirone F, Lavril T, Primet M, Dureau J.
Snips voice platform: An embedded spoken language understanding system for private-by-design voice interfaces. arXiv:1805.10190,
2018.
[17] Haffner P, Tur G, Wright JH. Optimizing svms for complex call classification. In: Proc. of the 2003 IEEE Int’l Conf. on Acoustics,
Speech, and Signal Processing. Hong Kong: IEEE, 2003. I-632–I-635. [doi: 10.1109/ICASSP.2003.1198860]
[18] Raymond C, Riccardi G. Generative and discriminative algorithms for spoken language understanding. In: Proc. of the 8th Interspeech
Annual Conf. of the Int’l Speech Communication Association. Anvers: HAL, 2007.
[19] Deng L, Tur G, He XD, Hakkani-Tur D. Use of kernel deep convex networks and end-to-end learning for spoken language understanding.
In: Proc. of the 2012 IEEE Spoken Language Technology Workshop (SLT). Miami: IEEE, 2012. 210–215. [doi: 10.1109/SLT.2012.
6424224]
[20] Tur G, Deng L, Hakkani-Tür D, He XD. Towards deeper understanding: Deep convex networks for semantic utterance classification. In:
Proc. of the 2012 IEEE Int’l Conf. on Acoustics, Speech and Signal Processing (ICASSP). Kyoto: IEEE, 2012. 5045–5048. [doi: 10.1109/
ICASSP.2012.6289054]
[21] Ravuri S, Stolcke A. Recurrent neural network and lstm models for lexical utterance classification. In: Proc. of the 16th Annual Conf. of
the Int’l Speech Communication Association. Dresden: ISCA, 2015. 135–139. [doi: 10.21437/Interspeech.2015-42]
[22] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780. [doi: 10.1162/neco.1997.9.8.1735]
[23] Wu CS, Hoi SCH, Socher R, Xiong CM. TOD-BERT: Pre-trained natural language understanding for task-oriented dialogue. In: Proc. of
the 2020 Conf. on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 2020.
917–929. [doi: 10.18653/v1/2020.emnlp-main.66]
[24] Yao KS, Zweig G, Hwang MY, Shi YY, Yu D. Recurrent neural networks for language understanding. In: Proc. of the 2013 Interspeech.
Lyon: ISCA, 2013. 2524–2528.