Page 170 - 《软件学报》2024年第4期
P. 170
1748 软件学报 2024 年第 35 卷第 4 期
[12] Rishabh A, Schuurmans D, Norouzi M. An optimistic perspective on offline reinforcement learning. In: Proc. of the 37th Int’l Conf.
on Machine Learning. 2020. 104−114.
[13] Botvinick M, Ritter S, Wang J, et al. Reinforcement learning, fast and slow. Trends in Cognitive Sciences, 2019, 23(5): 408−422.
[14] Huang ZG, Liu Q, Zhang LH, et al. Research and development on deep hierarchical reinforcement learning. Ruan Jian Xue
Bao/Journal of Software, 2023, 34(2): 733−760 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6706.htm [doi:
10.13328/j.cnki.jos.006706]
[15] Sun T, He Z, Qian H, et al. BBTv2: Towards a gradient-free future with large language models. In: Proc. of the 2022 Conf. on
Empirical Methods in Natural Language Processing. 2022. 3916−3930.
[16] Sun T, Shao Y, Qian H, et al. Black-box tuning for language-model-as-a-service. In: Proc. of the 39th Int’l Conf. on Machine
Learning. 2022. 20841−20855.
[17] Sanderson K. GPT-4 is here: What scientists think. Nature, 2023, 615(7954): 773.
[18] Liu P, Yuan W, Fu J, et al. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 2023, 55(9): 195,1−195,35.
[19] Lester B, Al-Rfou R, Constant N. The power of scale for parameter-efficient prompt tuning. In: Proc. of the 2021 Conf. on
Empirical Methods in Natural Language Processing. 2021. 3045−3059.
[20] Hu S, Ding N, Wang H, et al. Knowledgeable prompt-tuning: Incorporating knowledge into prompt verbalizer for text
classification. In: Proc. of the 60th Annual Meeting of the Association for Computational Linguistics. 2022. 2225−2240.
[21] Ke G, Meng Q, Finley T, et al. LightGBM: A highly efficient gradient boosting decision tree. In: Advances in Neural Information
Processing Systems 30. 2017. 3146−3154.
[22] Conn AR, Scheinberg K, Vicente L. Introduction to derivative-free optimization. Philadelphia: society for industrial and applied
mathematics, 2009. https://epubs.siam.org/terms-privacy
[23] Rios L, Sahinidis N. Derivative-free optimization: A review of algorithms and comparison of software implementations. Journal of
Global Optimization, 2013, 56(3): 1247−1293.
[24] Zhou ZH, Yu Y, Qian C. Evolutionary Learning: Advances in Theories and Algorithms. Springer, 2019.
[25] Li S, Kirby R, Zhe S. Batch multi-fidelity Bayesian optimization with deep auto-regressive networks. In: Advances in Neural
Information Processing Systems 34. 2021. 25463−25475.
[26] Poloczek M, Wang J, Frazier P. Multi-information source optimization. In: Advances in Neural Information Processing Systems 30.
2017. 4288−4298.
[27] Hu YQ, Yu Y, Tu W, et al. Multi-fidelity automatic hyper-parameter tuning via transfer series expansion. In: Proc. of the 33rd
AAAI Conf. on Artificial Intelligence. 2019. 3846−3853.
[28] Nemirovski A, Juditsky A, Lan G, et al. Robust stochastic approximation approach to stochastic programming. SIAM Journal on
Optimization, 2009, 19(4): 1574−1609.
[29] Bottou L. Large-scale machine learning with stochastic gradient descent. In: Proc. of the 19th Int’l Conf. on Computational
Statistics. 2010. 177−186.
[30] James B, Bardenet R, Bengio Y, et al. Algorithms for hyper-parameter optimization. In: Advances in Neural Information
Processing Systems 24. 2011. 2546−2554.
[31] Wu J, Toscano-Palmerin S, Frazier PI, et al. Practical multi-fidelity bayesian optimization for hyperparameter tuning. In: Proc. of
the 35th Conf. on Uncertainty in Artificial Intelligence. 2019. 788−798.
[32] Qian C, Yu Y, Zhou ZH. Analyzing evolutionary optimization in noisy environments. Evolutionary Computation, 2018, 26(1):
1−41.
[33] Qian C, Bian C, Yu Y, et al. Analysis of noisy evolutionary optimization when sampling fails. Algorithmica, 2021, 83(4):
940−975.
[34] Kandasamy K, Dasarathy G, Schneider J, et al. Multi-fidelity Bayesian optimisation with continuous approximations. In: Proc. of
the 34th Int’l Conf. on Machine Learning. 2017. 1799−1808.
[35] Falkner S, Klein A, Hutter F. BOHB: Robust and efficient hyperparameter optimization at scale. In: Proc. of the 35th Int’l Conf. on
Machine Learning. 2018. 1436−1445.