Page 279 - 《软件学报》2021年第12期
P. 279

郭宇红  等:分组随机化隐私保护频繁模式挖掘                                                           3943


          [4]    Kim JM, Warde  WD.  A stratified  Warner’s randomized response  model. Journal of Statistical Planning  and Inference, 2004,
             120(1-2):155−165. [doi: 10.1016/S0378-3758(02)00500-1]
          [5]    Huang ZL, Du WL, Teng ZX. Searching for better randomized response schemes for privacy-preserving data mining. In: Proc. of
             the 11th European Conf. on Principles and Practice of Knowledge Discovery in Databases (PKDD 2007). LNCS 4702, Springer-
             Verlag, 2007. 487−497. [doi: 10.1007/978-3-540-74976-9_50]
          [6]    Huang ZL, Du WL. OptRR: Optimizing randomized response schemes for privacy-preserving data mining. In: Proc. of the 24th
             IEEE Int’l Conf. on Data Engineering (ICDE 2008). IEEE Computer Society, 2008. 705−714. [doi: 10.1109/ICDE.2008.4497479]
          [7]    Tamhane AC. Randomized response techniques for multiple sensitive attributes. Journal of the American Statistical Association,
             1981,76(376):916−923. [doi: 10.1080/01621459.1981.10477741]
          [8]    Chu AM, So MK, Chan TW, et al. Estimating the dependence of mixed sensitive response types in randomized response technique.
             Statistical Methods in Medical Research, 2020,29(3):894−910. [doi: 10.1177/0962280219847492]
          [9]    Du W, Zhan Z. Using randomized response techniques for privacy-preserving data mining. In: Proc. of the 9th ACM SIGKDD Int’l
             Conf. on Knowledge Discovery and Data Mining (KDD 2003). ACM, 2003. 505−510. [doi: 10.1145/956750.956810]
         [10]    Rizvi SJ, Haritsa JR. Maintaining data privacy in association rule mining. In: Proc. of the 28th Int’l Conf. on Very Large Data
             Bases (VLDB 2002). Morgan Kaufmann Publishers, 2002. 682−698. [doi: 10.1016/B978-155860869-6/50066-4]
         [11]    Agrawal S, Krishnan V, Haritsa J. On addressing efficiency concerns in privacy preserving mining. In: Proc. of the 9th Int’l Conf.
             on Database Systems for Advanced Applications (DASFAA 2004). LNCS 2973, Springer-Verlag, 2004. 113−124. [doi: 10.1007/
             978-3-540-24571-1_9]
         [12]    Andruszkiewicz P. Optimization for mask scheme in privacy preserving data mining for association rules. In: Proc. of Int’l Conf.
             on Rough Sets and Emerging Intelligent Systems Paradigms (RSEISP 2007). LNAI 4585, Springer-Verlag, 2007. 465−474. [doi:
             10.1007/978-3-540-73451-2_49]
         [13]    Xia Y, Yang Y, Chi Y. Mining association rules with non-uniform privacy concerns. In: Proc. of the 9th ACM SIGMOD Workshop
             on Research Issues in  Data  Mining  and  Knowledge  Discovery (DMKD 2004). ACM, 2004. 27−34. [doi: 10.1145/1008694.
             1008699]
         [14]    Sun CJ,  Fu Y, Zhou  JL,  et al. Personalized privacy-preserving frequent itemset  mining using  randomized  response. Scientific
             World Journal, 2014. 1−10. [doi: 10.1155/2014/686151]
         [15]    Teng ZX, Du WL. A hybrid multi-group approach for privacy-preserving data mining. Knowledge and Information Systems, 2009,
             19(2):133−157. [doi: 10.1007/s10115-008-0158-y]
         [16]    Xu SZ. Research on differentially private frequent pattern mining techniques [Ph.D. Thesis]. Beijing: Beijing University of Posts
             and Telecommunications, 2016 (in Chinese with English abstract).
         [17]    Bullek B, Garboski  S, Darakhshan JM,  et al.  Towards understanding differential privacy: When do people trust randomized
             response technique? In: Proc. of the 2017 CHI Conf. on Human Factors in Computing Systems (CHI 2017). New York: ACM, 2017.
             3833−3837. [doi: 10.1145/3025453.3025698]
         [18]    Vu XS, Jiang LL, Brändström A, et al. Personality-based knowledge extraction for privacy-preserving data analysis. In: Proc. of the
             Knowledge Capture Conf. (K-CAP 2017), Vol.45. New York: ACM, 2017. 1−4. [doi: 10.1145/3148011.3154479]
         [19]    Xiao  XK,  Tao YF. Personalized privacy preservation. In: Proc. of  the  ACM SIGMOD  Int’l Conf. on  Management of  Data
             (SIGMOD 2006). New York: ACM, 2006. 229−240. [doi: 10.1145/1142473.1142500]
         [20]    Song XM, Wang X, Nie LQ, et al. A personal privacy preserving framework: I let you know who can see what. In: Proc. of the 41st
             Int’l ACM SIGIR Conf. on Research & Development in Information Retrieval (SIGIR 2018). New York: ACM, 2018. 295−304.
             [doi: 10.1145/3209978.3209995]
         [21]    Li YL, Miao,CL, Su L, et al. An efficient two-layer mechanism for privacy-preserving truth discovery. In: Proc. of the 24th ACM
             SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining (KDD 2018). New York: ACM, 2018. 1705−1714. [doi: 10.1145/
             3219819.3219998]
         [22]    Guo YH, Tong YH. Grouping randomized model in privacy preserving frequent item set mining. Journal of Huaqiao University
             (Natural Science), 2020,41(2):230−236 (in Chinese with English abstract). [doi: 10.11830/ISSN.1000-5013.201911025]
   274   275   276   277   278   279   280   281   282   283   284