Page 279 - 《软件学报》2021年第12期
P. 279
郭宇红 等:分组随机化隐私保护频繁模式挖掘 3943
[4] Kim JM, Warde WD. A stratified Warner’s randomized response model. Journal of Statistical Planning and Inference, 2004,
120(1-2):155−165. [doi: 10.1016/S0378-3758(02)00500-1]
[5] Huang ZL, Du WL, Teng ZX. Searching for better randomized response schemes for privacy-preserving data mining. In: Proc. of
the 11th European Conf. on Principles and Practice of Knowledge Discovery in Databases (PKDD 2007). LNCS 4702, Springer-
Verlag, 2007. 487−497. [doi: 10.1007/978-3-540-74976-9_50]
[6] Huang ZL, Du WL. OptRR: Optimizing randomized response schemes for privacy-preserving data mining. In: Proc. of the 24th
IEEE Int’l Conf. on Data Engineering (ICDE 2008). IEEE Computer Society, 2008. 705−714. [doi: 10.1109/ICDE.2008.4497479]
[7] Tamhane AC. Randomized response techniques for multiple sensitive attributes. Journal of the American Statistical Association,
1981,76(376):916−923. [doi: 10.1080/01621459.1981.10477741]
[8] Chu AM, So MK, Chan TW, et al. Estimating the dependence of mixed sensitive response types in randomized response technique.
Statistical Methods in Medical Research, 2020,29(3):894−910. [doi: 10.1177/0962280219847492]
[9] Du W, Zhan Z. Using randomized response techniques for privacy-preserving data mining. In: Proc. of the 9th ACM SIGKDD Int’l
Conf. on Knowledge Discovery and Data Mining (KDD 2003). ACM, 2003. 505−510. [doi: 10.1145/956750.956810]
[10] Rizvi SJ, Haritsa JR. Maintaining data privacy in association rule mining. In: Proc. of the 28th Int’l Conf. on Very Large Data
Bases (VLDB 2002). Morgan Kaufmann Publishers, 2002. 682−698. [doi: 10.1016/B978-155860869-6/50066-4]
[11] Agrawal S, Krishnan V, Haritsa J. On addressing efficiency concerns in privacy preserving mining. In: Proc. of the 9th Int’l Conf.
on Database Systems for Advanced Applications (DASFAA 2004). LNCS 2973, Springer-Verlag, 2004. 113−124. [doi: 10.1007/
978-3-540-24571-1_9]
[12] Andruszkiewicz P. Optimization for mask scheme in privacy preserving data mining for association rules. In: Proc. of Int’l Conf.
on Rough Sets and Emerging Intelligent Systems Paradigms (RSEISP 2007). LNAI 4585, Springer-Verlag, 2007. 465−474. [doi:
10.1007/978-3-540-73451-2_49]
[13] Xia Y, Yang Y, Chi Y. Mining association rules with non-uniform privacy concerns. In: Proc. of the 9th ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery (DMKD 2004). ACM, 2004. 27−34. [doi: 10.1145/1008694.
1008699]
[14] Sun CJ, Fu Y, Zhou JL, et al. Personalized privacy-preserving frequent itemset mining using randomized response. Scientific
World Journal, 2014. 1−10. [doi: 10.1155/2014/686151]
[15] Teng ZX, Du WL. A hybrid multi-group approach for privacy-preserving data mining. Knowledge and Information Systems, 2009,
19(2):133−157. [doi: 10.1007/s10115-008-0158-y]
[16] Xu SZ. Research on differentially private frequent pattern mining techniques [Ph.D. Thesis]. Beijing: Beijing University of Posts
and Telecommunications, 2016 (in Chinese with English abstract).
[17] Bullek B, Garboski S, Darakhshan JM, et al. Towards understanding differential privacy: When do people trust randomized
response technique? In: Proc. of the 2017 CHI Conf. on Human Factors in Computing Systems (CHI 2017). New York: ACM, 2017.
3833−3837. [doi: 10.1145/3025453.3025698]
[18] Vu XS, Jiang LL, Brändström A, et al. Personality-based knowledge extraction for privacy-preserving data analysis. In: Proc. of the
Knowledge Capture Conf. (K-CAP 2017), Vol.45. New York: ACM, 2017. 1−4. [doi: 10.1145/3148011.3154479]
[19] Xiao XK, Tao YF. Personalized privacy preservation. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data
(SIGMOD 2006). New York: ACM, 2006. 229−240. [doi: 10.1145/1142473.1142500]
[20] Song XM, Wang X, Nie LQ, et al. A personal privacy preserving framework: I let you know who can see what. In: Proc. of the 41st
Int’l ACM SIGIR Conf. on Research & Development in Information Retrieval (SIGIR 2018). New York: ACM, 2018. 295−304.
[doi: 10.1145/3209978.3209995]
[21] Li YL, Miao,CL, Su L, et al. An efficient two-layer mechanism for privacy-preserving truth discovery. In: Proc. of the 24th ACM
SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining (KDD 2018). New York: ACM, 2018. 1705−1714. [doi: 10.1145/
3219819.3219998]
[22] Guo YH, Tong YH. Grouping randomized model in privacy preserving frequent item set mining. Journal of Huaqiao University
(Natural Science), 2020,41(2):230−236 (in Chinese with English abstract). [doi: 10.11830/ISSN.1000-5013.201911025]