Page 236 - 《软件学报》2021年第12期
P. 236
3900 Journal of Software 软件学报 Vol.32, No.12, December 2021
[11] Zhang YP, Zhang H. Image clustering based on SIFT-affinity propagation. In: Proc. of the 11th Int’l Conf. on Fuzzy Systems and
Knowledge Discovery (FSKD 2014). 2014. 358−362. [doi: 10.1109/FSKD.2014.6980860]
[12] Frey BJ, Dueck D. Clustering by passing messages between data points. Science, 2007,315(5814):972−976. [doi: 10.1126/
SCIENCE.1136800]
[13] Li KH. Reservoir-sampling algorithms of time complexity O(n(1+log(N/n))). ACM Trans. on Mathematical Software, 1994,20(4):
481−493. [doi: 10.1145/198429.198435]
[14] Babcock B, Datar M, Motwani R. Sampling from a moving window over streaming data. In: Proc. of the 13th Annual ACM-SIAM
Symp. on Discrete Algorithms. 2002. 633−634. [doi: 10.1145/545381.545465]
[15] Shang FH, Jiao LC, Shi JR, et al. Fast affinity propagation clustering: A multilevel approach. Pattern Recognition, 2012,45(1):
474−486. [doi: 10.1016/J.PATCOG.2011.04.032]
[16] Sun LL, Guo CH. Incremental affinity propagation clustering based on message passing. IEEE Trans. on Knowledge and Data
Engineering, 2014,26(11):2731−2744. [doi: 10.1109/TKDE.2014.2310215]
[17] Li P, Ji HF, Wang BL, et al. Adjustable preference affinity propagation clustering. Pattern Recognition Letters, 2017,85(85):72−78.
[doi: 10.1016/J.PATREC.2016.11.017]
[18] Zhang J, He MY, Dai YC. Modified affinity propagation clustering. In: Proc. of the 2014 IEEE China Summit & Int’l Conf. on
Signal and Information Processing (ChinaSIP). 2014. 505−509. [doi: 10.1109/CHINASIP.2014.6889294]
[19] Weiss Y, Freeman WT. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE
Trans. on Information Theory, 2001,47(2):736−744. [doi: 10.1109/18.910585]
[20] Wang CD, Lai JH, Suen CY, et al. Multi-exemplar affinity propagation. IEEE Trans. on Pattern Analysis and Machine Intelligence,
2013,35(9):2223−2237. [doi: 10.1109/TPAMI.2013.28]
[21] Yang HF, Liu Y, Xie ZP, et al. Efficiently training ball vector machine in online way. Journal of Computer Research and
Development, 2013,50(9):1836−1842 (in Chinese with English abstract).
[22] Xie ZP, Sun J, Palade V, et al. Evolutionary sampling: A novel way of machine learning within a probabilistic framework.
Information Sciences, 2015,299:262−282. [doi: 10.1016/J.INS.2014.12.001]
[23] Li XN, Yin MJ, Li MT, et al. Hierarchical affinity propagation clustering for large-scale data set. Computer Science, 2014,41(3):
185−188 (in Chinese with English abstract). [doi: 10.3969/j.issn.1002-137X.2014.03.040]
[24] Dyk DAV, Meng XL. The art of data augmentation. Journal of Computational and Graphical Statistics, 2001,10(1):1−50. [doi:
10.1198/10618600152418584]
[25] Salamon J, Bello JP. Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE
Signal Processing Letters, 2017,24(3):279−283. [doi: 10.1109/LSP.2017.2657381]
[26] Cui XD, Goel V, Kingsbury B. Data augmentation for deep convolutional neural network acoustic modeling. In: Proc. of the 2015
IEEE Int’l Conf. on Acoustics, Speech and Signal Processing (ICASSP). 2015. 4545−4549. [doi: 10.1109/ICASSP.2015.7178831]
附中文参考文献:
[7] 齐美彬,朱俊俊,纪平,等.大规模图像集中的代表性图像选取.自动化学报,2014,40(4):706−712. [doi: 10.3724/SP.J.1004.2014.
00706]
[21] 杨海峰,刘渊,谢振平,等.球向量机的快速在线学习.计算机研究与发展,2013,50(9):1836−1842.
[23] 刘晓楠,尹美娟,李明涛,等.面向大规模数据的分层近邻传播聚类方法.计算机科学,2013,41(3):185−188. [doi: 10.3969/j.issn.
1002-137X.2014.03.040]
陈晓琪(1994-),女,硕士生,主要研究领域 刘渊(1967-),男,教授,博士生导师,CCF
为大数据知识发现. 高级会员,主要研究领域为数字媒体,网络
安全.
谢振平(1977-),男,博士,教授,博士生导 詹千熠(1989-),女,博士,副教授,CCF 专
师,CCF 专业会员,主要研究领域为知识建 业会员,主要研究领域为数据挖掘,社交网
模,认知计算,智能系统软件. 络分析.