Page 236 - 《软件学报》2021年第12期
P. 236

3900                                Journal of Software  软件学报 Vol.32, No.12, December 2021

         [11]    Zhang YP, Zhang H. Image clustering based on SIFT-affinity propagation. In: Proc. of the 11th Int’l Conf. on Fuzzy Systems and
             Knowledge Discovery (FSKD 2014). 2014. 358−362. [doi: 10.1109/FSKD.2014.6980860]
         [12]    Frey BJ, Dueck D. Clustering  by passing messages  between  data  points.  Science,  2007,315(5814):972−976. [doi: 10.1126/
             SCIENCE.1136800]
         [13]    Li KH. Reservoir-sampling algorithms of time complexity O(n(1+log(N/n))). ACM Trans. on Mathematical Software, 1994,20(4):
             481−493. [doi: 10.1145/198429.198435]
         [14]    Babcock B, Datar M, Motwani R. Sampling from a moving window over streaming data. In: Proc. of the 13th Annual ACM-SIAM
             Symp. on Discrete Algorithms. 2002. 633−634. [doi: 10.1145/545381.545465]
         [15]    Shang FH, Jiao  LC, Shi  JR,  et al. Fast affinity propagation clustering: A multilevel approach. Pattern Recognition, 2012,45(1):
             474−486. [doi: 10.1016/J.PATCOG.2011.04.032]
         [16]    Sun  LL, Guo  CH. Incremental  affinity propagation  clustering based on  message passing. IEEE  Trans. on Knowledge  and  Data
             Engineering, 2014,26(11):2731−2744. [doi: 10.1109/TKDE.2014.2310215]
         [17]    Li P, Ji HF, Wang BL, et al. Adjustable preference affinity propagation clustering. Pattern Recognition Letters, 2017,85(85):72−78.
             [doi: 10.1016/J.PATREC.2016.11.017]
         [18]    Zhang J, He MY, Dai YC. Modified affinity propagation clustering. In: Proc. of the 2014 IEEE China Summit & Int’l Conf. on
             Signal and Information Processing (ChinaSIP). 2014. 505−509. [doi: 10.1109/CHINASIP.2014.6889294]
         [19]    Weiss Y, Freeman WT. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE
             Trans. on Information Theory, 2001,47(2):736−744. [doi: 10.1109/18.910585]
         [20]    Wang CD, Lai JH, Suen CY, et al. Multi-exemplar affinity propagation. IEEE Trans. on Pattern Analysis and Machine Intelligence,
             2013,35(9):2223−2237. [doi: 10.1109/TPAMI.2013.28]
         [21]    Yang HF, Liu Y,  Xie ZP,  et  al. Efficiently  training ball  vector machine in  online way.  Journal  of Computer Research and
             Development, 2013,50(9):1836−1842 (in Chinese with English abstract).
         [22]    Xie  ZP, Sun J, Palade  V,  et  al. Evolutionary  sampling: A  novel way  of machine  learning within a  probabilistic framework.
             Information Sciences, 2015,299:262−282. [doi: 10.1016/J.INS.2014.12.001]
         [23]    Li XN, Yin MJ, Li MT, et al. Hierarchical affinity propagation clustering for large-scale data set. Computer Science, 2014,41(3):
             185−188 (in Chinese with English abstract). [doi: 10.3969/j.issn.1002-137X.2014.03.040]
         [24]    Dyk DAV, Meng XL. The art  of  data augmentation.  Journal  of Computational and Graphical  Statistics,  2001,10(1):1−50. [doi:
             10.1198/10618600152418584]
         [25]    Salamon  J, Bello JP. Deep convolutional neural  networks and data augmentation  for environmental sound classification.  IEEE
             Signal Processing Letters, 2017,24(3):279−283. [doi: 10.1109/LSP.2017.2657381]
         [26]    Cui XD, Goel V, Kingsbury B. Data augmentation for deep convolutional neural network acoustic modeling. In: Proc. of the 2015
             IEEE Int’l Conf. on Acoustics, Speech and Signal Processing (ICASSP). 2015. 4545−4549. [doi: 10.1109/ICASSP.2015.7178831]
         附中文参考文献:
          [7]  齐美彬,朱俊俊,纪平,等.大规模图像集中的代表性图像选取.自动化学报,2014,40(4):706−712. [doi: 10.3724/SP.J.1004.2014.
             00706]
         [21]  杨海峰,刘渊,谢振平,等.球向量机的快速在线学习.计算机研究与发展,2013,50(9):1836−1842.
         [23]  刘晓楠,尹美娟,李明涛,等.面向大规模数据的分层近邻传播聚类方法.计算机科学,2013,41(3):185−188. [doi: 10.3969/j.issn.
             1002-137X.2014.03.040]

                       陈晓琪(1994-),女,硕士生,主要研究领域                      刘渊(1967-),男,教授,博士生导师,CCF
                       为大数据知识发现.                                    高级会员,主要研究领域为数字媒体,网络
                                                                    安全.



                       谢振平(1977-),男,博士,教授,博士生导                      詹千熠(1989-),女,博士,副教授,CCF 专
                       师,CCF 专业会员,主要研究领域为知识建                        业会员,主要研究领域为数据挖掘,社交网
                       模,认知计算,智能系统软件.                               络分析.
   231   232   233   234   235   236   237   238   239   240   241