Page 149 - 《软件学报》2021年第12期
P. 149

张健  等:基于实值 RBM 的深度生成网络研究                                                         3813


          [9]    Blundell C, Cornebise J, Kavukcuoglu K. Weight uncertainty in neural networks. In: Proc. of the Int’l Conf. on Machine Learning.
             2015.
         [10]    Zhang N, Ding S, Zhang J, et al. Research on point-wise gated deep networks. Applied Soft Computing, 2017,52:1210−1221.
         [11]    Huang H, Toyoizumi T. Advanced mean-field theory of the restricted Boltzmann machine. Physical Review E Statistical Nonlinear
             & Soft Matter Physics, 2015.
         [12]    Zhang N, Ding S, Zhang J, et al. An overview on restricted Boltzmann machines. Neurocomputing, 2018,275:1186−1199.
         [13]    Zhang  J,  Ding S,  Zhang N.  An  overview on probability undirected graphs  and their  applications in image processing.
             Neurocomputing, 2018,321:156−168.
         [14]    Isola P, Zhu J, Zhou T, et al. Image-to-image translation with conditional adversarial networks. In: Proc. of the IEEE Conf. on
             Computer Vision and Pattern Recognition. 2017.
         [15]    Cho K, Raiko T, Ilin A. Gaussian-bernoulli deep Boltzmann machine. In: Proc. of the IEEE Int’l Joint Conf. on Neural Networks.
             2014.
         [16]    Su Q, Liao X, Chen C, et al. Nonlinear statistical learning with truncated gaussian graphical models. In: Proc. of the Int’l Conf. on
             Machine Learning. 2016.
         [17]    Radford A, Metz L, Chintala  S. Unsupervised  representation  learning with  deep convolutional  generative adversarial  networks.
             arXiv: 1511.06434, arXiv, 2018.
         [18]    Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein GANs. In: Advances in Neural Information Processing
             Systems. 2017.
         [19]    Dinh L, Sohl-Dickstein J, Bengio S. Density estimation using Real NVP. In: Proc. of the Int’l Conf. of Learning Research. 2016.


                       张健(1990-),男,博士,讲师,CCF 专业会                    丁玲(1994-),女,讲师,主要研究领域为机
                       员,主要研究领域为机器学习,模式识别.                          器学习,数据挖掘.






                       丁世飞(1963-),男,博士,教授,博士生导                      张成龙(1992-),男,博士生,主要研究领域
                       师,CCF 杰出会员,主要研究领域为智能信                        为机器学习,模式识别.
                       息处理,人工智能与模式识别,机器学习与
                       数据挖掘,粗糙集与软计算,大数据分析与
                       云计算.
   144   145   146   147   148   149   150   151   152   153   154