Page 149 - 《软件学报》2021年第12期
P. 149
张健 等:基于实值 RBM 的深度生成网络研究 3813
[9] Blundell C, Cornebise J, Kavukcuoglu K. Weight uncertainty in neural networks. In: Proc. of the Int’l Conf. on Machine Learning.
2015.
[10] Zhang N, Ding S, Zhang J, et al. Research on point-wise gated deep networks. Applied Soft Computing, 2017,52:1210−1221.
[11] Huang H, Toyoizumi T. Advanced mean-field theory of the restricted Boltzmann machine. Physical Review E Statistical Nonlinear
& Soft Matter Physics, 2015.
[12] Zhang N, Ding S, Zhang J, et al. An overview on restricted Boltzmann machines. Neurocomputing, 2018,275:1186−1199.
[13] Zhang J, Ding S, Zhang N. An overview on probability undirected graphs and their applications in image processing.
Neurocomputing, 2018,321:156−168.
[14] Isola P, Zhu J, Zhou T, et al. Image-to-image translation with conditional adversarial networks. In: Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition. 2017.
[15] Cho K, Raiko T, Ilin A. Gaussian-bernoulli deep Boltzmann machine. In: Proc. of the IEEE Int’l Joint Conf. on Neural Networks.
2014.
[16] Su Q, Liao X, Chen C, et al. Nonlinear statistical learning with truncated gaussian graphical models. In: Proc. of the Int’l Conf. on
Machine Learning. 2016.
[17] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks.
arXiv: 1511.06434, arXiv, 2018.
[18] Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein GANs. In: Advances in Neural Information Processing
Systems. 2017.
[19] Dinh L, Sohl-Dickstein J, Bengio S. Density estimation using Real NVP. In: Proc. of the Int’l Conf. of Learning Research. 2016.
张健(1990-),男,博士,讲师,CCF 专业会 丁玲(1994-),女,讲师,主要研究领域为机
员,主要研究领域为机器学习,模式识别. 器学习,数据挖掘.
丁世飞(1963-),男,博士,教授,博士生导 张成龙(1992-),男,博士生,主要研究领域
师,CCF 杰出会员,主要研究领域为智能信 为机器学习,模式识别.
息处理,人工智能与模式识别,机器学习与
数据挖掘,粗糙集与软计算,大数据分析与
云计算.