Page 103 - 《软件学报》2021年第12期
P. 103

肖勇  等:基于 GAT2VEC 的 Web 服务分类方法                                                    3767


         [25]    Kumar S, Mishra RB.  Towards  a  framework for  classification  and recommendation of semantic Web service  composition
             approaches. Int’l Journal of Computers and Applications, 2009,31(4):274−281.
         [26]    Moraru A, Fortuna C, Fortuna B, et al. A hybrid approach to QoS-aware Web service classification and recommendation. In: Proc.
             of the 2009 IEEE 5th Int’l Conf. on Intelligent Computer Communication and Processing. IEEE, 2009. 343−346.
         [27]    Makhlughian M, Hashemi SM, Rastegari Y, et al. Web service selection based on ranking of QoS using associative classification.
             arXiv preprint arXiv:1204.1425, 2012.
         [28]    TF MR, SivaPragasam P, BalaKrishnan R, et al. QoS based classification using K-nearest neighbor algorithm for effective Web
             service  selection. In: Proc. of the 2015 IEEE Int’l  Conf. on  Electrical, Computer  and  Communication  Technologies (ICECCT).
             IEEE, 2015. 1−4.
         [29]    Shi M, Liu J, Cao B, et al. A prior knowledge based approach to improving accuracy of Web services clustering. In: Proc. of the
             2018 IEEE Int’l Conf. on Services Computing (SCC). IEEE, 2018. 1−8.
         [30]    Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space. CoRR. arXiv:1301.3781, 2013.
         [31]    Le QV, Mikolov T. Distributed representations of sentences and documents. CoRR.arXiv:1405.4053, 2014.
         [32]    Huang X, Li J, Hu X. Label informed attributed network embedding. In: Proc. of the 10th ACM Int’l Conf. on Web Search and
             Data Mining. ACM, 2017. 731−739.
         [33]    Dong Y, Chawla NV, Swami A. Metapath2vec: Scalable representation learning for heterogeneous networks. In: Proc. of the 23rd
             ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. ACM, 2017. 135−144.

         附中文参考文献:
          [5]  石敏,刘建勋,周栋,等.基于多重关系主题模型的 Web 服务聚类方法.计算机学报,2019,42(4):820−836.
         [20]  刘超.一种基于特征向量的 Web 服务发现算法研究[硕士学位论文].长春:吉林大学,2011.


                       肖勇(1995-),男,硕士生,CCF 学生会员,                    曹步清(1979-),男,博士,教授,博士生导
                       主要研究领域为服务计算与云计算,大数                           师,CCF 高级会员,主要研究领域为服务计
                       据处理,GIS 与移动计算.                               算与云计算,社会网络与软件工程.



                       刘建勋(1970-),男,博士,教授,博士生导                      曹应成(1994-),男,硕士生,主要研究领域
                       师,CCF 杰出会员,主要研究领域为服务计                        为服务计算与云计算,大数据处理,GIS 与
                       算与云计算,大数据处理,GIS 与移动计算.                       移动计算.



                       胡蓉(1977-),女,博士,副教授,CCF 专业
                       会员 , 主要 研究 领域为 服务 计 算 , 数据
                       挖掘.
   98   99   100   101   102   103   104   105   106   107   108