Page 102 - 《软件学报》2021年第12期
P. 102

3766                                Journal of Software  软件学报 Vol.32, No.12, December 2021

         References:
          [1]    Ye H, Cao B, Peng Z, et al. Web services classification based on Wide & Bi-LSTM model. IEEE Access, 2019,7: 43697−43706.
          [2]    Bruno M, Canfora G, Penta MD, et al. An approach to support Web service classification and annotation. In: Proc. of the IEEE Int’l
             Conf. on E-Technology, E-Commerce and E-Service. IEEE Computer Society, 2005. 138−143.
          [3]    Crosso M, Zunino A, Campo M. AWSC: An approach to Web serviceclassification based machine learning techniques. Inteligencia
             Artificial, 2008,12(37):25−36.
          [4]    Katakis I, Meditskos G, Tsoumakas G, et al. On the combination of textual and semantic descriptions for automated semantic Web
             service classification. In: Proc. of the IFIP Int’l Conf. on Artificial Intelligence Applications and Innovations. Boston: Springer-
             Verlag, 2009. 95−104.
          [5]    Shi M,  Liu JX,  Zhou D,  et al. Web service  clustering  method based on  multiple relational topic  model. Journal of  Computer
             Science, 2019,42(4):820−836 (in Chinese with English abstract).
          [6]    Cao Y,  Liu J, Cao  B,  et al.  Web  services  classification  with topical  attention based  Bi-LSTM. In: Proc. of the Int’l  Conf. on
             Collaborative Computing: Networking, Applications and Worksharing. Cham: Springer-Verlag, 2019. 394−407.
          [7]    Chen J, Cao B, Cao Y, et al. A mobile application classification method with enhanced topic attention mechanism. In: Proc. of the
             CCF Conf. on Computer Supported Cooperative Work and Social Computing. Singapore: Springer-Verlag, 2019. 683−695.
          [8]    Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. In: Proc. of the 20th ACM SIGKDD Int’l
             Conf. on Knowledge Discovery and Data Mining. ACM, 2014. 701−710.
          [9]    Grover  A,  Leskovec J.  Node2vec: Scalable feature  learning for networks. In: Proc. of the  22nd ACM SIGKDD Int’l  Conf. on
             Knowledge Discovery and Data Mining. ACM, 2016. 855−864.
         [10]    Tang J, Qu M, Wang M, et al. Line: Large-scale information network embedding. In: Proc. of the 24th Int’l Conf. on World Wide
             Web. Int’l World Wide Web Conferences Steering Committee, 2015. 1067−1077.
         [11]    Yang C, Liu Z, Zhao D, et al. Network representation learning with rich text information. In: Proc. of the 24th Int’l Joint Conf. on
             Artificial Intelligence. 2015. 2111−2117.
         [12]    Pan S, Wu J, Zhu X, et al. Tri-party deep network representation. Network, 2016,11(9):12.
         [13]    Sheikh N, Kefato Z, Montresor A. Gat2vec: Representation learning for attributed graphs. Computing, 2019,101(3):187−209.
         [14]    Tang J, Qu M, Mei Q. Pte: Predictive text embedding through large-scale heterogeneous text networks. In: Proc. of the 21th ACM
             SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. ACM, 2015. 1165−1174.
         [15]    Wang D, Cui  P, Zhu W. Structural deep  network embedding.  In:  Proc. of the  22nd ACM  SIGKDD Int’l Conf.  on Knowledge
             Discovery and Data Mining. ACM, 2016. 1225−1234.
         [16]    Morin F, Bengio Y. Hierarchical probabilistic neural network language model. Aistats, 2005,5:246−252.
         [17]    Le Q, Mikolov T. Distributed representations of sentences and documents. In: Proc. of the Int’l Conf. on Machine Learning. 2014.
             1188−1196.
         [18]    Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. Journal of Machine Learning Research, 2003,3(Jan.):993−1022.
         [19]    Maaten LV, Hinton G. Visualizing data using t-sne. Journal of Machine Learning Research, 2008,9(9):2579−605.
         [20]    Liu C. Research on a feature vector-based Web service discovery algorithm [Master’s Thesis]. Changchun: Jilin University, 2011
             (in Chinese with English abstract).
         [21]    Hou J, Wen Y. Utilizing tags for scientific workflow recommendation. In: Proc. of the Int’l Conf. on Applications and Techniques
             in Cyber Security and Intelligence. Cham: Springer-Verlag, 2019. 951−958.
         [22]    Hou J, Wen Y. Prediction of learners’ academic performance using factorization machine and decision tree. In: Proc. of the 2019
             Int’l Conf.  on Internet  of Things  (iThings) and  IEEE Green Computing and Communications  (GreenCom) and  IEEE Cyber,
             Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, 2019. 1−8.
         [23]    Kuang L, Wu J, Deng S, et al. Service classification using adaptive back-propagation neural network and semantic similarity. In:
             Proc. of the 2006 10th Int’l Conf. on Computer Supported Cooperative Work in Design. IEEE, 2006. 1−5.
         [24]    Corella MÁ, Castells P. Semi-automatic semantic-based Web service classification. In: Proc. of the Int’l Conf. on Business Process
             Management. Berlin, Heidelberg: Springer-Verlag, 2006. 459−470.
   97   98   99   100   101   102   103   104   105   106   107