Page 318 - 《软件学报》2021年第11期
P. 318

3644                               Journal of Software  软件学报 Vol.32, No.11, November 2021

                 [4]    Goldreich O, Micali  S,  Wigderson A. How to  play any mental  game.  In:  Proc.  of the  19th Annual  ACM Conf.  on Theory of
                     Computing. New York: ACM, 1987. 218−229. [doi: 10.1145/28395.28420]
                 [5]    Goldreich  O. Fundamental of  Cryptography II:  Basic  Applications.  London:  Cambridge University Press, 2004. 599−729. [doi:
                     10.1017/CBO9780511721656]
                 [6]    Tang CM, Shi GH, Yao ZA. Secure multi-party computation protocol for sequencing problem. Science China Information Sciences,
                     2011,54(8):1654−1662. [doi: 10.1007/s11432-011-4272-1]
                 [7]    Toft T. Sub-linear, secure comparison with two non-colluding parties. In: Proc. of Int’l Conf. on Practice and Theory in Public Key
                     Cryptography. Berlin: Springer-Verlag, 2011. 174−191. [doi: 10.1007/978-3-642-19379-8_11]
                 [8]    Yi X, Rao FY, Bertino E, Bouguettaya A. Privacy-preserving association rule mining in cloud computing. In: Proc. of the 10th
                     ACM Symp. on Information, Computer and Communications Security. Association for Computing Machinery, 2015. 439−450. [doi:
                     10.1145/2714576. 2714603]
                 [9]    Li YP, Chen MH, Li QW, Zhang W. Enabling multilevel trust in privacy preserving data mining. IEEE Trans. on Knowledge and
                     Data Engineering, 2012,24(9):1598−1612. [doi: 10.1109/TKDE.2011.124]
                [10]    Mehmed K. Data Mining: Concepts, Models, Methods, and Algorithms. Hoboken: John Wiley & Sons, 2011. 1−25. [doi: 10.1002/
                     9781118029145.ch1]
                [11]    Du WL, Atallah MJ. Secure multi-party computation problems and their applications: A review and open problems. In: Proc. of the
                     2001 Workshop on New Security Paradigms. ACM, 2001. 13−22. [doi: 10.1145/508171.508174]
                [12]    Li SD, Wu CY, Wang DS, Dai YQ. Secure multiparty computation of solid geometric problems and their applications. Information
                     Sciences, 2014,282:401−413. [doi: 10.1016/j.ins.2014.04.004]
                [13]    Li  SD, Wang  DS, Dai  YQ. Efficient  secure multiparty computational  geometry. Chinese Journal  of Electronics,  2010,19(2):
                     324−328.
                [14]    Liu YJ, Luo X,  Joneja A, Ma CX,  Fu XL,  Song DW. User-adaptive sketch-based  3D CAD model  retrieval.  IEEE Trans. on
                     Automation Science and Engineering, 2013,10(3):783−795. [doi: 10.1109/TASE.2012.2228481]
                [15]    Fong PK, Weber-Jahnke JH. Privacy preserving decision tree learning using unrealized data sets. IEEE Trans. on Knowledge and
                     Data Engineering, 2012,24(2):353−364. [doi: 10.1109/TKDE.2010.226]
                [16]    Liu LG, Sun H, Jia HL, Zhang Y. CGIM: Classificatory group index method for efficient ranked search of encrypted cloud data.
                     Chinese Journal  of Electronics,  2019,47(2):331−336  (in Chinese with English abstract). [doi:  10.3969/j.issn.0372-2112.2019.02.
                     011]
                [17]    Huang H, Li XY, Sun Y, Huang LS. PPS: Privacy-preserving strategyproof social-efficient spectrum auction mechanisms. IEEE
                     Trans. on Parallel and Distributed Systems, 2015,26(5):1393−1404. [doi: 10.1109/TPDS.2014.2315200]
                [18]    Li MJ, Juan JST, Tsai JHC. Practical electronic auction scheme with strong anonymity and bidding privacy. Information Sciences,
                     2011,181(12):2576−2586. [doi: 10.1016/j.ins.2011.02.005]
                [19]    Yin X, Tian YL, Wang HL. Delegation auction scheme for big data pricing. Chinese Journal of Electronics, 2018,46(5):1113−1120
                     (in Chinese with English abstract). [doi: 10.3969/j.issn.0372-2112.2018.05.014]
                [20]    Chrétien S, Zhen WOH. Incoherent submatrix selection via approximate independence sets in scalar product graphs. In: Nicosia G,
                     Pardalos  P, Umeton  R, Giuffrida G,  Sciacca  V, eds. Proc.  of  the Machine  Learning, Optimization, and Data  Science.  Cham:
                     Springer-Verlag, 2019. 95−105. https://doi.org/10.1007/978-3-030-37599-7_9
                [21]    Hofmann J, Fey D, Riedmann M, Eitzinger J, Hager G, Wellein G. Performance analysis of the Kahan-enhanced scalar product on
                     current multi-core and many-core processors. Concurrency and Computation: Practice and Experience, 2017,29(9):1−16. [doi: 10.
                     1002/cpe.3921]
                [22]    Lin WP, Wang K, Zhang ZL, Chen H. Revisiting security risks of asymmetric scalar product preserving encryption and its variants.
                     In: Proc. of the 2017 IEEE 37th Int’l Conf. on Distributed Computing Systems (ICDCS). Atlanta: IEEE, 2017. 1116−1125. [doi:
                     10.1109/ICDCS.2017.20]
                [23]    You  YP, Li XH. Ordering  scalar  products with applications in financial engineering and actuarial  science. Journal  of Applied
                     Probability, 2016,53(1):47−56.
                [24]    Zhou SF, Dou JW, Guo YM, Mao Q, Li SD. Secure multiparty vector computation. Chinese Journal of Computers, 2017,40(5):
                     1134−1150 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2017.01134]
                [25]    Siabi B, Berenjkoub M, Susilo W. Optimally efficient secure scalar product with applications in cloud computing. IEEE Access,
                     2019,7:42798−42815. [doi: 10.1109/ACCESS.2019.2908230]
                [26]    Rong H, Wang HM, Huang K, Liu J, Xian M. Privacy-preserving scalar product computation in cloud environments under multiple
                     keys. In: Yin H, ed. Proc. of the Intelligent Data Engineering and Automated Learning. Cham: Springer-Verlag, 2016. 248−258.
                     https://doi.org/10.1007/978-3-319-46257-8_27
   313   314   315   316   317   318   319   320   321   322   323