Page 169 - 《软件学报》2021年第11期
P. 169

何相腾  等:跨域和跨模态适应学习的无监督细粒度视频分类                                                    3495


                [22]    Long MS, Zhu  H, Wang JM, Jordan MI.  Deep  transfer learning  with joint  adaptation networks. In: Proc. of the Int’l  Conf. on
                     Machine Learning (ICML). New York: ACM, 2017. 2208−2217.
                [23]    He KM, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proc. of the IEEE Int’l Conf. on Computer Vision (ICCV). Piscataway:
                     IEEE, 2017. 2980−2988.
                [24]    Otsu N. A threshold selection method from gray-level histograms. IEEE Trans. on Systems, Man, and Cybernetics (TCYB), 1979,
                     9(1):62−66.
                [25]    Wah C, Branson S, Welinder P, Perona P, Belongie S. The Caltech-UCSD birds-200-2011 dataset. Technical Report, CNS-TR-
                     2011-001, Pasadena: California Institute of Technology, 2011.
                [26]    Krause J, Stark M, Deng J, Li FF. 3D object representations for fine-grained categorization. In: Proc. of the Int’l Conf. of Computer
                     Vision Workshop (ICCVW). Piscataway: IEEE, 2013. 554−561.
                [27]    Zhang WC, Ouyang WL, Li W, Xu D. Collaborative and adversarial network for unsupervised domain adaptation. In: Proc. of the
                     IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2018. 3801−3809.
                [28]    Saito K, Watanabe K, Ushiku Y, Harada T. Maximum classifier discrepancy for unsupervised domain adaptation. In: Proc. of the
                     IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2018. 3723−3732.
                [29]    Carreira J,  Zisserman  A.  Quo  Vadis,  action recognition? A new  model  and  the kinetics dataset. In: Proc. of the IEEE  Conf. on
                     Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017. 4724−4733.


                              何相腾(1991-),男,博士,主要研究领域为                      彭宇新(1974-),男,博士,教授,博士生导
                              细粒度图像分类,细粒度跨媒体检索,多模                          师,CCF 杰出会员,主要研究领域为跨媒体
                              态内容理解.                                       分析与推理,图像视频识别与理解,计算机
                                                                           视觉,人工智能.
   164   165   166   167   168   169   170   171   172   173   174