Page 168 - 《软件学报》2021年第11期
P. 168

3494                                Journal of Software  软件学报 Vol.32, No.11, November 2021

                 References:
                 [1]    Zhu C, Tan X, Zhou F, Liu X, Yue KY, Ding ER, Ma Y. Fine-grained video categorization with redundancy reduction attention. In:
                     Proc. of the European Conf. on Computer Vision (ECCV). Berlin: Springer-Verlag, 2018. 139−155.
                 [2]    Torralba A, Efros AA. Unbiased look at dataset bias. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
                     (CVPR). Piscataway: IEEE, 2011. 1521−1528.
                 [3]    Zhang NN, Donahue J, Girshick R, Darrell T. Part-based r-CNNs for fine-grained category detection. In: Proc. of the Int’l Conf. on
                     Machine Learning (ICML). New York: ACM, 2014. 834−849.
                 [4]    Krause J, Jin HL, Yang JC, Li FF. Fine-grained recognition without part annotations. In: Proc. of the IEEE Conf. on Computer
                     Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2015. 5546−5555.
                 [5]    Xiao TJ, Xu YC, Yang KY, Zhang JX, Peng YX, Zhang Z. The application of two-level attention models in deep convolutional
                     neural network for fine-grained image  classification. In: Proc. of the IEEE  Conf. on  Computer  Vision  and Pattern Recognition
                     (CVPR). Piscataway: IEEE, 2015. 842−850.
                 [6]    Uijlings JRR, van de Sande KEA, Gevers T, Smeulders AWM. Selective search for object recognition. Int’l Journal of Computer
                     Vision (IJCV), 2013,104(2):154−171.
                 [7]    Fu JL,  Zheng  HL, Mei  T.  Look  closer to see better:  Recurrent  attention  convolutional neural network for fine-grained image
                     recognition. In: Proc. of  the IEEE Conf. on  Computer Vision  and Pattern  Recognition  (CVPR).  Piscataway:  IEEE,  2017.
                     4438−4446.
                 [8]    He XT, Peng YX, Zhao JJ. Stackdrl: Stacked deep reinforcement learning for fine-grained visual categorization. In: Proc. of the
                     Int’l Joint Conf. on Artificial Intelligence (IJCAI). San Francisco: Morgan Kaufmann Publishers, 2018. 741−747.
                 [9]    Lin TY, Chowdhury AR, Maji S. Bilinear CNN models for fine-grained visual recognition. In: Proc. of the Int’l Conf. of Computer
                     Vision (ICCV). Piscataway: IEEE, 2015. 1449−1457.
                [10]    Gao Y, Beijbom O, Zhang N, Darrell T. Compact bilinear pooling. In: Proc. of the IEEE Conf. on Computer Vision and Pattern
                     Recognition (CVPR). Piscataway: IEEE, 2016. 317−326.
                [11]    Cui  Y,  Zhou F,  Wang J,  Liu  X, Lin  YQ, Belongie S.  Kernel pooling for convolutional neural networks. In:  Proc. of the IEEE
                     Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017. 3049−3058.
                [12]    Wang YM, Morariu VI, Davis LS. Learning a discriminative filter bank within a CNN for fine-grained recognition. In: Proc. of the
                     IEEE Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2018. 4148−4157.
                [13]    He XT, Peng YX. Fine-grained image classification via combining vision and language. In: Proc. of the IEEE Conf. on Computer
                     Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017. 5994−6002.
                [14]    Chen TS, Lin L, Chen RQ, Wu Y, Luo XN. Knowledge-embedded representation learning for fine-grained image recognition. In:
                     Proc. of the Int’l Joint Conf. on Artificial Intelligence (IJCAI). San Francisco: Morgan Kaufmann Publishers, 2018. 627−634.
                [15]    Saito  T,  Kanezaki A, Harada  T. Ibc127:  Video dataset for  fine-grained bird  classification. In: Proc. of the IEEE Int’l  Conf. on
                     Multimedia and Expo (ICME). Piscataway: IEEE, 2016. 1−6.
                [16]    Kalogeiton V, Ferrari V, Schmid C. Analysing domain shift factors between videos and images for object detection. IEEE Trans. on
                     Pattern Analysis and Machine Intelligence (TPAMI), 2016,38(11):2327−2334.
                [17]    Ben-David S,  Blitzer J,  Crammer  K, Pereira F.  Analysis of representations for domain  adaptation. In: Proc. of the Neural
                     Information Processing Systems (NeurIPS). Cambridge: MIT Press, 2007. 137−144.
                [18]    Gebru T, Hoffman J, Li FF. Fine-grained recognition in the wild: A multi-task domain adaptation approach. In: Proc. of the IEEE
                     Int’l Conf. onComputer Vision (ICCV). Piscataway: IEEE, 2017. 1358−1367.
                [19]    Cui Y, Song Y, Sun C, Howard A, Belongie S. Large scale fine-grained categorization and domain-specific transfer learning. In:
                     Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2018. 4109−4118.
                [20]    He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In: Proc. of the IEEE Conf. on Computer Vision
                     and Pattern Recognition (CVPR). Piscataway: IEEE, 2016. 770−778.
                [21]    Yosinski  J,  Clune J,  Bengio  Y,  Lipson  H. How transferable  are features in deep neural networks? In: Proc. of the  Neural
                     Information Processing Systems (NeurIPS). Cambridge: MIT Press, 2014. 3320−3328.
   163   164   165   166   167   168   169   170   171   172   173